Barrier Function-based Safe Reinforcement Learning for Formation Control of Mobile Robots

Xinglong Zhang, Yaoqian Peng, Wei Pan, Xin Xu, Haibin Xie

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Distributed model predictive control (DMPC) concerns how to online control multiple robotic systems with constraints effectively. However, the nonlinearity, nonconvexity, and strong interconnections of dynamic system models and constraints can make the real-time and real-world DMPC implementations nontrivial. Reinforcement learning (RL) algorithms are promising for control policy design. However, how to ensure safety in terms of state constraints in RL remains a significant issue. This paper proposes a barrier function-based safe reinforcement learning algorithm for DMPC of nonlinear multi-robot systems under state constraints. The proposed approach is composed of several local learning-based MPC regulators. Each regulator, associated with a local system, learns and deploys the local control policy using a safe reinforcement learning algorithm in a distributed manner, i.e., with state information only among the neighbor agents. As a prominent feature of the proposed algorithm, we present a novel barrier-based policy structure to ensure safety, which has a clear mechanistic interpretation. Both simulated and real-world experiments on the formation control of mobile robots with collision avoidance show the effectiveness of the proposed safe reinforcement learning algorithm for DMPC.

Original languageEnglish
Title of host publication2022 IEEE International Conference on Robotics and Automation, ICRA 2022
PublisherIEEE
Pages5532-5538
Number of pages7
ISBN (Electronic)9781728196817
DOIs
Publication statusPublished - 2022
Event39th IEEE International Conference on Robotics and Automation, ICRA 2022 - Philadelphia, United States
Duration: 23 May 202227 May 2022

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference39th IEEE International Conference on Robotics and Automation, ICRA 2022
Country/TerritoryUnited States
CityPhiladelphia
Period23/05/2227/05/22

Fingerprint

Dive into the research topics of 'Barrier Function-based Safe Reinforcement Learning for Formation Control of Mobile Robots'. Together they form a unique fingerprint.

Cite this