Basis of solutions for a system of linear inequalities in integers: Computation and applications

D. Chubarov, A. Voronkov

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Abstract

    We define a basis of solutions of a system of linear inequalities and present a general algorithm for finding such a basis. Our algorithm relies on an algorithm for finding a Hilbert basis for the set of nonnegative solutions of a system of linear inequalities and can be used in conjunction with any such algorithm. © Springer-Verlag Berlin Heidelberg 2005.
    Original languageEnglish
    Title of host publicationLecture Notes in Computer Science|Lect. Notes Comput. Sci.
    EditorsJ. Jedrzejowicz, A. Szepietowski
    PublisherSpringer Nature
    Pages260-270
    Number of pages10
    Volume3618
    DOIs
    Publication statusPublished - 2005
    Event30th International Symposium on Mathematical Foundations of Computer Science 2005, MFCS 2005 - Gdansk
    Duration: 1 Jul 2005 → …
    http://dblp.uni-trier.de/db/conf/mfcs/mfcs2005.html#KorovinV05http://dblp.uni-trier.de/rec/bibtex/conf/mfcs/KorovinV05.xmlhttp://dblp.uni-trier.de/rec/bibtex/conf/mfcs/KorovinV05

    Publication series

    NameLecture Notes in Computer Science

    Conference

    Conference30th International Symposium on Mathematical Foundations of Computer Science 2005, MFCS 2005
    CityGdansk
    Period1/07/05 → …
    Internet address

    Fingerprint

    Dive into the research topics of 'Basis of solutions for a system of linear inequalities in integers: Computation and applications'. Together they form a unique fingerprint.

    Cite this