Bayesian Inference for Joint Modelling of Longitudinal Continuous, Binary and Ordinal Events

Qiuju Li, Jianxin Pan, John Belcher

    Research output: Contribution to journalArticlepeer-review

    Abstract

    In medical studies, repeated measurements of continuous, binary and ordinal outcomes are routinely collected from the same patient. Instead of modeling each outcome separately, in this study we propose to jointly model the trivariate longitudinal responses, so as to take account of the inherent association between the different outcomes and thus improve statistical inferences. This work is motivated by a large cohort study in the North West of England, involving trivariate responses from each patient: Body Mass Index, Depression (Yes/No) ascertained with cut-off score not less than 8 at the Hospital Anxiety and Depression Scale, and Pain Interference generated from the Medical Outcomes Study 36-item short-form health survey with values returned on an ordinal scale 1-5. There are some well-established methods for combined continuous and binary, or even continuous and ordinal responses, but little work was done on the joint analysis of continuous, binary, and ordinal responses. We propose conditional joint random-effects models which take into account the inherent association between the continuous, binary and ordinal outcomes. Bayesian analysis methods are used to make statistical inferences. Simulation studies show that, by jointly modeling the trivariate outcomes, standard deviations of the estimates of parameters in the models are smaller and much more stable, leading to more efficient parameter estimates and reliable statistical inferences. In the real data analysis, the proposed joint analysis yields a much smaller DIC value than the separate analysis, and shows other good statistical properties too.
    Original languageEnglish
    Pages (from-to)2521-2540
    Number of pages20
    JournalStatistical Methods in Medical Research
    Volume25
    Issue number6
    DOIs
    Publication statusPublished - 1 Dec 2016

    Keywords

    • Binary data; Gibbs sampling; joint modeling; longitudinal multivariate outcomes; ordinal; random effects

    Fingerprint

    Dive into the research topics of 'Bayesian Inference for Joint Modelling of Longitudinal Continuous, Binary and Ordinal Events'. Together they form a unique fingerprint.

    Cite this