Bias in iterative reconstruction of low-statistics PET data: Benefits of a resolution model

M. D. Walker, M. C. Asselin, P. J. Julyan, M. Feldmann, P. S. Talbot, T. Jones, J. C. Matthews

    Research output: Contribution to journalArticlepeer-review


    Iterative image reconstruction methods such as ordered-subset expectation maximization (OSEM) are widely used in PET. Reconstructions via OSEM are however reported to be biased for low-count data. We investigated this and considered the impact for dynamic PET. Patient listmode data were acquired in [ 11C]DASB and [15O]H2O scans on the HRRT brain PET scanner. These data were subsampled to create many independent, low-count replicates. The data were reconstructed and the images from low-count data were compared to the high-count originals (from the same reconstruction method). This comparison enabled low-statistics bias to be calculated for the given reconstruction, as a function of the noise-equivalent counts (NEC). Two iterative reconstruction methods were tested, one with and one without an image-based resolution model (RM). Significant bias was observed when reconstructing data of low statistical quality, for both subsampled human and simulated data. For human data, this bias was substantially reduced by including a RM. For [11C]DASB the low-statistics bias in the caudate head at 1.7 M NEC (approx. 30 s) was -5.5% and -13% with and without RM, respectively. We predicted biases in the binding potential of -4% and -10%. For quantification of cerebral blood flow for the whole-brain grey-or white-matter, using [ 15O]H2O and the PET autoradiographic method, a low-statistics bias of
    Original languageEnglish
    Pages (from-to)931-949
    Number of pages18
    JournalPhysics in Medicine and Biology
    Issue number4
    Publication statusPublished - 21 Feb 2011


    Dive into the research topics of 'Bias in iterative reconstruction of low-statistics PET data: Benefits of a resolution model'. Together they form a unique fingerprint.

    Cite this