Bicircular light tuning of magnetic symmetry and topology in Dirac semimetal Cd$_3$As$_2$

Research output: Contribution to journalArticlepeer-review

Abstract

We show that Floquet engineering using bicircular light (BCL) is a versatile way to control magnetic symmetries and topology in materials. The electric field of BCL, which is a superposition of two circularly polarized light waves with frequencies that are integer multiples of each other, traces out a rose pattern in the polarization plane that can be chosen to break selective symmetries, including spatial inversion. Using a realistic low-energy model, we theoretically demonstrate that the three-dimensional Dirac semimetal Cd$_3$As$_2$ is a promising platform for BCL Floquet engineering. Without strain, BCL irradiation induces a transition to a non-centrosymmetric magnetic Weyl semimetal phase with tunable energy separation between the Weyl nodes. In the presence of strain, we predict the emergence of a magnetic topological crystalline insulator with exotic unpinned surface Dirac states that are protected by a combination of twofold rotation and time-reversal $(2')$ and can be controlled by light.
Original languageUndefined
JournalArXiv
Publication statusPublished - 13 May 2021

Cite this