TY - JOUR
T1 - Bottom-up physiologically-based biokinetic modelling as an alternative to animal testing
AU - Tan, Pei Feng Shawn
PY - 2019/10/24
Y1 - 2019/10/24
N2 - There is a growing need for alternatives to animal testing to derive biokinetic data for evaluating both efficacy and safety of chemicals. One such alternative is bottom-up physiologically-based biokinetic (PBK) modeling which requires only in vitro data. The primary objective of this study is to develop and validate bottom-up PBK models of 3 HMG-CoA reductase inhibitors: rosuvastatin, fluvastatin and pitavastatin. Bottom-up PBK models were built using the Simcyp® Simulator by incorporating in vitro transporter and metabolism data (Vmax, Jmax, Km, CLint) obtained from the literature and proteomics-based scaling factors to account for differences in transporters expression between in vitro systems and in vivo organs. Simulations were performed for single intravenous, single oral and multiple oral dose of these chemicals. The results showed that our bottom-up models predicted systemic exposure (AUC0h-t), maximum plasma concentration (Cmax), plasma clearance and time to reach Cmax (Tmax) within two-fold of the observed data, with the exception of parameters associated with multiple oral pitavastatin dosing and single oral fluvastatin dosing. Additional middle-out simulations were performed using animal distribution data to inform tissue-to-plasma equilibrium distribution ratios for rosuvastatin and pitavastatin. This improved the predicted plasma-concentration time profiles but did not significantly alter the predicted biokinetic parameters. Our study demonstrates that quantitative proteomics-based mechanistic in vitro-to-in vivo extrapolation (IVIVE) could account for downregulation of transporters in culture and predict whole organ clearances without empirical scaling. Hence, bottom-up PBK modeling incorporating mechanistic IVIVE could be a viable alternative to animal testing in predicting human biokinetics.
AB - There is a growing need for alternatives to animal testing to derive biokinetic data for evaluating both efficacy and safety of chemicals. One such alternative is bottom-up physiologically-based biokinetic (PBK) modeling which requires only in vitro data. The primary objective of this study is to develop and validate bottom-up PBK models of 3 HMG-CoA reductase inhibitors: rosuvastatin, fluvastatin and pitavastatin. Bottom-up PBK models were built using the Simcyp® Simulator by incorporating in vitro transporter and metabolism data (Vmax, Jmax, Km, CLint) obtained from the literature and proteomics-based scaling factors to account for differences in transporters expression between in vitro systems and in vivo organs. Simulations were performed for single intravenous, single oral and multiple oral dose of these chemicals. The results showed that our bottom-up models predicted systemic exposure (AUC0h-t), maximum plasma concentration (Cmax), plasma clearance and time to reach Cmax (Tmax) within two-fold of the observed data, with the exception of parameters associated with multiple oral pitavastatin dosing and single oral fluvastatin dosing. Additional middle-out simulations were performed using animal distribution data to inform tissue-to-plasma equilibrium distribution ratios for rosuvastatin and pitavastatin. This improved the predicted plasma-concentration time profiles but did not significantly alter the predicted biokinetic parameters. Our study demonstrates that quantitative proteomics-based mechanistic in vitro-to-in vivo extrapolation (IVIVE) could account for downregulation of transporters in culture and predict whole organ clearances without empirical scaling. Hence, bottom-up PBK modeling incorporating mechanistic IVIVE could be a viable alternative to animal testing in predicting human biokinetics.
KW - In vitro-to-in vivo extrapolation
KW - Transporters
KW - Metabolism
KW - quantitative proteomics
UR - http://dx.doi.org/10.14573/altex.1812051
U2 - 10.14573/altex.1812051
DO - 10.14573/altex.1812051
M3 - Article
SN - 1868-596X
JO - ALTEX
JF - ALTEX
ER -