Abstract
Background
Stillbirth prevention is an international priority ‐ risk prediction models could individualise care and reduce unnecessary intervention, but their use requires evaluation.
Objectives
To identify risk prediction models for stillbirth, and assess their potential accuracy and clinical benefit in practice.
Search strategy
Medline, EMBASE, DH‐DATA and AMED databases were searched from inception to June 2019 using terms relevant to stillbirth, perinatal mortality and prediction models. The search was compliant with PRISMA guidelines.
Selection criteria
Studies developing and/or validating prediction models for risk of stillbirth developed for application during pregnancy.
Data collection and analysis
Study screening and data extraction were conducted in duplicate, using the CHARMS checklist. Risk of bias was appraised using the PROBAST tool.
Results
The search identified 2751 citations. Fourteen studies reporting development of 69 models were included. Variables consistently included were: ethnicity, body mass index (BMI), uterine artery Doppler, pregnancy‐associated plasma protein (PAPP‐A) and placental growth factor (PlGF). Almost all models had significant concern about risk of bias. Apparent model performance (i.e. in the development dataset) was highest in models developed for use later in pregnancy and including maternal characteristics, and ultrasound and biochemical variables, but few were internally validated and none were externally validated.
Conclusions
Almost all models identified were at high risk of bias. There are first trimester models of possible clinical benefit in early risk stratification; these require validation and clinical evaluation. There were few later pregnancy models, but if validated, these could be most relevant to individualised discussions around timing of birth.
Stillbirth prevention is an international priority ‐ risk prediction models could individualise care and reduce unnecessary intervention, but their use requires evaluation.
Objectives
To identify risk prediction models for stillbirth, and assess their potential accuracy and clinical benefit in practice.
Search strategy
Medline, EMBASE, DH‐DATA and AMED databases were searched from inception to June 2019 using terms relevant to stillbirth, perinatal mortality and prediction models. The search was compliant with PRISMA guidelines.
Selection criteria
Studies developing and/or validating prediction models for risk of stillbirth developed for application during pregnancy.
Data collection and analysis
Study screening and data extraction were conducted in duplicate, using the CHARMS checklist. Risk of bias was appraised using the PROBAST tool.
Results
The search identified 2751 citations. Fourteen studies reporting development of 69 models were included. Variables consistently included were: ethnicity, body mass index (BMI), uterine artery Doppler, pregnancy‐associated plasma protein (PAPP‐A) and placental growth factor (PlGF). Almost all models had significant concern about risk of bias. Apparent model performance (i.e. in the development dataset) was highest in models developed for use later in pregnancy and including maternal characteristics, and ultrasound and biochemical variables, but few were internally validated and none were externally validated.
Conclusions
Almost all models identified were at high risk of bias. There are first trimester models of possible clinical benefit in early risk stratification; these require validation and clinical evaluation. There were few later pregnancy models, but if validated, these could be most relevant to individualised discussions around timing of birth.
Original language | English |
---|---|
Journal | BJOG: An International Journal of Obstetrics & Gynaecology |
Early online date | 7 Sept 2020 |
DOIs | |
Publication status | E-pub ahead of print - 7 Sept 2020 |