Cancer-associated loss-of-function mutations implicate DAPK3 as a tumor-suppressing Kinase

John Brognard, You Wei Zhang, Lorena A. Puto, Tony Hunter

Research output: Contribution to journalArticlepeer-review

Abstract

Cancer kinome sequencing studies have identified several protein kinases predicted to possess driver (i.e., causal) mutations. Using bioinformatic applications, we have pinpointed DAPK3 (ZIPK) as a novel cancerassociated kinase with functional mutations. Evaluation of nonsynonymous point mutations, discovered in DAPK3 in various tumors (T112M, D161N, and P216S), reveals that all three mutations decrease or abolish kinase activity. Furthermore, phenotypic assays indicate that the three mutations observed in cancer abrogate the function of the kinase to regulate both the cell cycle and cell survival. Coexpression of wild-type (WT) and cancer mutant kinases shows that the cancer mutants dominantly inhibit the function of the WT kinase. Reconstitution of a non-small cell lung cancer cell line that harbors an endogenous mutation in DAPK3 (P216S) with WT DAPK3 resulted in decreased cellular aggregation and increased sensitivity to chemotherapy. Our results suggest that DAPK3 is a tumor suppressor in which loss-of-function mutations promote increased cell survival, proliferation, cellular aggregation, and increased resistance to chemotherapy. © 2011 American Association for Cancer Research.
Original languageEnglish
Pages (from-to)3152-3161
Number of pages9
JournalCancer Research
Volume71
Issue number8
DOIs
Publication statusPublished - 15 Apr 2011

Research Beacons, Institutes and Platforms

  • Manchester Cancer Research Centre

Fingerprint

Dive into the research topics of 'Cancer-associated loss-of-function mutations implicate DAPK3 as a tumor-suppressing Kinase'. Together they form a unique fingerprint.

Cite this