TY - JOUR
T1 - Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: Implications for PET imaging of human tumors
AU - Martinez-Outschoorn, Ubaldo E.
AU - Lin, Zhao
AU - Trimmer, Casey
AU - Flomenberg, Neal
AU - Wang, Chenguang
AU - Pavlides, Stephanos
AU - Pestell, Richard G.
AU - Howell, Anthony
AU - Sotgia, Federica
AU - Lisanti, Michael P.
N1 - P30-CA-56036, NCI NIH HHS, United StatesR01-AR-055660, NIAMS NIH HHS, United StatesR01-CA-080250, NCI NIH HHS, United StatesR01-CA-098779, NCI NIH HHS, United StatesR01-CA-107382, NCI NIH HHS, United StatesR01-CA-120876, NCI NIH HHS, United StatesR01-CA-70896, NCI NIH HHS, United StatesR01-CA-75503, NCI NIH HHS, United StatesR01-CA-86072, NCI NIH HHS, United States
PY - 2011/8/1
Y1 - 2011/8/1
N2 - Previously, we proposed that cancer cells behave as metabolic parasites, as they use targeted oxidative stress as a "weapon" to extract recycled nutrients from adjacent stromal cells. Oxidative stress in cancer-associated fibroblasts triggers autophagy and mitophagy, resulting in compartmentalized cellular catabolism, loss of mitochondrial function, and the onset of aerobic glycolysis, in the tumor stroma. As such, cancer-associated fibroblasts produce high-energy nutrients (such as lactate and ketones) that fuel mitochondrial biogenesis and oxidative metabolism in cancer cells. We have termed this new energy-transfer mechanism the "Reverse Warburg Effect." To further test the validity of this hypothesis, here we used an in vitro MCF7-fibroblast co-culture system and quantitatively measured a variety of metabolic parameters by FACS analysis (analogous to laser-capture micro-dissection). Mitochondrial activity, glucose uptake and ROS production were measured with highly-sensitive fluorescent probes (MitoTracker, NBD-2-deoxy-glucose and DCF-DA). Interestingly, using this approach, we directly show that cancer cells initially secrete hydrogen peroxide that then triggers oxidative stress in neighboring fibroblasts. Thus, oxidative stress is contagious (spreads like a virus) and is propagated laterally and vectorially from cancer cells to adjacent fibroblasts. Experimentally, we show that oxidative stress in cancer-associated fibroblasts quantitatively reduces mitochondrial activity and increases glucose uptake, as the fibroblasts become more dependent on aerobic glycolysis. Conversely, co-cultured cancer cells show significant increases in mitochondrial activity and corresponding reductions in both glucose uptake and GLUT1 expression. Pretreatment of co-cultures with extracellular catalase (an anti-oxidant enzyme that detoxifies hydrogen peroxide) blocks the onset of oxidative stress and potently induces the death of cancer cells, likely via starvation. Given that cancer-associated fibroblasts show the largest increases in glucose uptake, we suggest that PET imaging of human tumors, with Fluoro-2-deoxy-D-glucose (F-2-DG), may be specifically detecting the tumor stroma, rather than epithelial cancer cells. © 2011 Landes Bioscience.
AB - Previously, we proposed that cancer cells behave as metabolic parasites, as they use targeted oxidative stress as a "weapon" to extract recycled nutrients from adjacent stromal cells. Oxidative stress in cancer-associated fibroblasts triggers autophagy and mitophagy, resulting in compartmentalized cellular catabolism, loss of mitochondrial function, and the onset of aerobic glycolysis, in the tumor stroma. As such, cancer-associated fibroblasts produce high-energy nutrients (such as lactate and ketones) that fuel mitochondrial biogenesis and oxidative metabolism in cancer cells. We have termed this new energy-transfer mechanism the "Reverse Warburg Effect." To further test the validity of this hypothesis, here we used an in vitro MCF7-fibroblast co-culture system and quantitatively measured a variety of metabolic parameters by FACS analysis (analogous to laser-capture micro-dissection). Mitochondrial activity, glucose uptake and ROS production were measured with highly-sensitive fluorescent probes (MitoTracker, NBD-2-deoxy-glucose and DCF-DA). Interestingly, using this approach, we directly show that cancer cells initially secrete hydrogen peroxide that then triggers oxidative stress in neighboring fibroblasts. Thus, oxidative stress is contagious (spreads like a virus) and is propagated laterally and vectorially from cancer cells to adjacent fibroblasts. Experimentally, we show that oxidative stress in cancer-associated fibroblasts quantitatively reduces mitochondrial activity and increases glucose uptake, as the fibroblasts become more dependent on aerobic glycolysis. Conversely, co-cultured cancer cells show significant increases in mitochondrial activity and corresponding reductions in both glucose uptake and GLUT1 expression. Pretreatment of co-cultures with extracellular catalase (an anti-oxidant enzyme that detoxifies hydrogen peroxide) blocks the onset of oxidative stress and potently induces the death of cancer cells, likely via starvation. Given that cancer-associated fibroblasts show the largest increases in glucose uptake, we suggest that PET imaging of human tumors, with Fluoro-2-deoxy-D-glucose (F-2-DG), may be specifically detecting the tumor stroma, rather than epithelial cancer cells. © 2011 Landes Bioscience.
KW - Aerobic glycolysis
KW - Cancer associated fibroblasts
KW - Caveolin-1
KW - Glucose uptake
KW - Hydrogen peroxide
KW - Microenvironment
KW - Mitochondrial oxidative phosphorylation
KW - Oxidative stress
KW - PET imaging
KW - Reactive oxygen species (ROS)
KW - The field effect
KW - Tumor stroma
U2 - 10.4161/cc.10.15.16585
DO - 10.4161/cc.10.15.16585
M3 - Article
C2 - 21778829
SN - 1538-4101
VL - 10
SP - 2504
EP - 2520
JO - Cell Cycle
JF - Cell Cycle
IS - 15
ER -