TY - JOUR
T1 - Carbene–Metal–Amide Polycrystalline Materials Feature Blue Shifted Energy yet Unchanged Kinetics of Emission
AU - Feng, Jiale
AU - Taffet, Elliot J.
AU - Reponen, Antti-Pekka M.
AU - Romanov, Alexander S.
AU - Olivier, Yoann
AU - Lemaur, Vincent
AU - Yang, Lupeng
AU - Linnolahti, Mikko
AU - Bochmann, Manfred
AU - Beljonne, David
AU - Credgington, Dan
PY - 2020/6/9
Y1 - 2020/6/9
N2 - he nature of carbene–metal–amide (CMA) photoluminescence in the solid state is explored through spectroscopic and quantum-chemical investigations on a representative Au-centered molecule. The crystalline phase offers well-defined coplanar geometries—enabling the link between molecular conformations and photophysical properties to be unravelled. We show that a combination of restricted torsional distortion and molecular electronic polarization blue shift the charge-transfer emission by around 400 meV in the crystalline versus the amorphous phase, through energetically raising the less-dipolar S1 state relative to S0. This blue shift brings the lowest charge-transfer states very close to the localized carbazole triplet state, whose structured emission is observable at low temperature in the polycrystalline phase. Moreover, we discover that the rate of intersystem crossing and emission kinetics are unaffected by the extent of torsional distortion. We conclude that more coplanar triplet equilibrium conformations control the photophysics of CMAs.
AB - he nature of carbene–metal–amide (CMA) photoluminescence in the solid state is explored through spectroscopic and quantum-chemical investigations on a representative Au-centered molecule. The crystalline phase offers well-defined coplanar geometries—enabling the link between molecular conformations and photophysical properties to be unravelled. We show that a combination of restricted torsional distortion and molecular electronic polarization blue shift the charge-transfer emission by around 400 meV in the crystalline versus the amorphous phase, through energetically raising the less-dipolar S1 state relative to S0. This blue shift brings the lowest charge-transfer states very close to the localized carbazole triplet state, whose structured emission is observable at low temperature in the polycrystalline phase. Moreover, we discover that the rate of intersystem crossing and emission kinetics are unaffected by the extent of torsional distortion. We conclude that more coplanar triplet equilibrium conformations control the photophysics of CMAs.
UR - https://doi.org/10.1021/acs.chemmater.0c01363
U2 - 10.1021/acs.chemmater.0c01363
DO - 10.1021/acs.chemmater.0c01363
M3 - Article
SN - 0897-4756
JO - Chemistry of Materials
JF - Chemistry of Materials
ER -