Abstract
Herein, we document and assess the biogenicity of carbonaceous microstructures present in the lowermost of the stratiform chert units (informally known as the ‘Apex chert’), at the Chinaman Creek locality in the Marble Bar greenstone belt, Pilbara Craton, Western Australia. Carbonaceous material mostly occurs within clotted grey-black cherts and microgranular ‘grainstone-like’ cherts within the stratiform unit, the latter being the major focus of this study. In the clotted cherts, carbon occurs as lobate, fluffy grains, rare compressed flakes, and as a grain boundary phase around spherulitic silica. There is no morphological evidence to support the biogenicity of these microstructures. In contrast, the microgranular chert contains fluffy and flaky carbonaceous grains, plus laminated grains comprising multiple non-isopachous wrinkled carbonaceous laminae, with noted thickening towards some ridge crests, as determined by confocal laser scanning microscopy. Roll-up structures provide evidence of an initial plasticity, interpreted to have formed via the tearing-up and current-induced plastic deformation of microbial mat fragments. Geochemical mapping, using laser Raman micro-spectroscopy and NanoSIMS, respectively demonstrates the antiquity of the carbon, and reveals a close correlation between carbon, nitrogen and sometimes sulphur, concentrated within dark brown to black laminae. Adjacent to microgranular zones are zones of more persistent carbonaceous, undulose, filament-like laminae that entrain relict sediment grains. These microstructures are directly comparable to a sub-type of microbially induced sedimentary structure (MISS), widely reported from younger siliciclastic sediments colonised by microbial biofilms.
The morphology and chemical composition of both the non-isopachous laminated grains and the filament-like laminae are consistent with a biological interpretation, suggesting microscopic MISS were present in the microgranular stratiform ‘Apex chert’. However, the fact that neither macroscopic MISS nor bona fide microfossils have yet been reported from this unit, coupled with the proximity of these structures to active hydrothermal vents, potentially discharging hot carbon-rich fluids, urges caution in such an interpretation. The Chinaman Creek ‘Apex chert’ investigated here is one of at least five sedimentary, laminated cherts within the Apex Basalt. These horizons are promising targets in the search for biological activity within a dominantly volcanic Archaean environment.
Original language | English |
---|---|
Pages (from-to) | 161-178 |
Journal | Precambrian Research |
Volume | 278 |
DOIs | |
Publication status | Published - Jun 2016 |
Fingerprint
Dive into the research topics of 'Carbonaceous microstructures from sedimentary laminated chert within the 3.46 Ga Apex Basalt, Chinaman Creek locality, Pilbara, Western Australia'. Together they form a unique fingerprint.Projects
-
ICAL: Interdisciplinary Centre for Ancient Life
Garwood, R. (PI), Wogelius, R. (PI), Sansom, R. (CoI), Buckley, M. (CoI), Chamberlain, A. (CoI), Manning, P. (CoI), Egerton, V. (CoI), Sellers, W. (CoI), Nudds, J. (CoI), Bulot, L. G. (CoI), Brocklehurst, R. (PGR student), Brassey, C. A. (CoI), Keating, J. (CoI), La Porta, A. (CoI), Brocklehurst, R. (PGR student), Callender-Crowe, L. (PGR student), Wallace, E. (PGR student), Chester, J. (PGR student), Davenport, J. (PGR student), Tuley, K. (PGR student), Lomax, D. (Researcher), Reeves, J. (PGR student), Smart, C. (PGR student), Ferro, C. (PGR student), Karoullas, C. (PGR student), Heath, J. (PGR student), Dickson, A. (PGR student), Austin Sydes, L. (PGR student), McLean, C. (PGR student), Harvey, V. (PGR student) & Jones, K. (PI)
Project: Research