TY - GEN
T1 - Cardiac motion estimation by using high-dimensional features and K-means clustering method
AU - Oubel, Estanislao
AU - Hero, Alfred O.
AU - Frangi, Alejandro F.
PY - 2006
Y1 - 2006
N2 - Tagged Magnetic Resonance Imaging (MRI) is currently the reference modality for myocardial motion and strain analysis. Mutual Information (MI) based non rigid registration has proven to be an accurate method to retrieve cardiac motion and overcome many drawbacks present on previous approaches. In a previous work,1 we used Wavelet-based Attribute Vectors (WAVs) instead of pixel intensity to measure similarity between frames. Since the curse of dimensionality forbids the use of histograms to estimate MI of high dimensional features, k-Nearest Neighbors Graphs (kNNG) were applied to calculate α-MI. Results showed that cardiac motion estimation was feasible with that approach. In this paper, K-Means clustering method is applied to compute MI from the same set of WAVs. The proposed method was applied to four tagging MRI sequences, and the resulting displacements were compared with respect to manual measurements made by two observers. Results show that more accurate motion estimation is obtained with respect to the use of pixel intensity.
AB - Tagged Magnetic Resonance Imaging (MRI) is currently the reference modality for myocardial motion and strain analysis. Mutual Information (MI) based non rigid registration has proven to be an accurate method to retrieve cardiac motion and overcome many drawbacks present on previous approaches. In a previous work,1 we used Wavelet-based Attribute Vectors (WAVs) instead of pixel intensity to measure similarity between frames. Since the curse of dimensionality forbids the use of histograms to estimate MI of high dimensional features, k-Nearest Neighbors Graphs (kNNG) were applied to calculate α-MI. Results showed that cardiac motion estimation was feasible with that approach. In this paper, K-Means clustering method is applied to compute MI from the same set of WAVs. The proposed method was applied to four tagging MRI sequences, and the resulting displacements were compared with respect to manual measurements made by two observers. Results show that more accurate motion estimation is obtained with respect to the use of pixel intensity.
KW - Cardiac Motion Estimation
KW - High Dimensional Features
KW - K-Means Clustering Method
KW - Non Rigid Registration
UR - http://www.scopus.com/inward/record.url?scp=33745122223&partnerID=8YFLogxK
U2 - 10.1117/12.653921
DO - 10.1117/12.653921
M3 - Conference contribution
AN - SCOPUS:33745122223
SN - 0819464236
SN - 9780819464231
SN - 0819464236
SN - 9780819464231
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2006
T2 - Medical Imaging 2006: Image Processing
Y2 - 13 February 2006 through 16 February 2006
ER -