Abstract
Background: Osteoarthritis has been associated with a plethora of pathological factors and one which has recently emerged is chondrocyte endoplasmic reticulum (ER) stress. ER stress is sensed by key ER-resident stress-sensors, one of which is activating transcription factor 6 (ATF6). The purpose of this study is to determine whether increased ER stress plays a role in OA.
Methods: OA was induced in male wild-type (+/+), ColIITgcog (c/c) and Atf6α-/- mice by destabilisation of the medial meniscus (DMM). c/c mice have increased ER stress in chondrocytes via the collagen II promoter driven-expression of ER stress-inducing Tgcog. Knee joints were scored histologically for OA severity. RNA-seq was performed on laser-micro-dissected RNA from cartilage of +/+ and c/c DMM-operated mice.
Results: In situ hybridisation demonstrated a correlation between the up-regulation of ER stress marker, BiP, and early signs of proteoglycan loss and cartilage damage in DMM-operated +/+ mice. Histological analysis revealed a significant reduction in OA severity in c/c mice compared with +/+ at 2 weeks post-DMM. This chondroprotective effect in c/c mice was associated with a higher ambient level of BiP protein prior to DMM and a delay in chondrocyte apoptosis. RNA-seq analysis suggested Xbp1-regulated networks to be significantly enriched in c/c mice at 2 weeks post-DMM. Compromising the ER through genetically ablating Atf6α, a key ER stress sensor, had no effect on DMM-induced OA severity.
Conclusion: Our studies indicate that an increased capacity to effectively manage increases in ER stress in articular cartilage due either to pre-conditioning as a result of prior exposure to ER stress or to genetic pre-disposition may be beneficial in delaying the onset of OA but once established, ER stress plays no significant role in disease progression.
Methods: OA was induced in male wild-type (+/+), ColIITgcog (c/c) and Atf6α-/- mice by destabilisation of the medial meniscus (DMM). c/c mice have increased ER stress in chondrocytes via the collagen II promoter driven-expression of ER stress-inducing Tgcog. Knee joints were scored histologically for OA severity. RNA-seq was performed on laser-micro-dissected RNA from cartilage of +/+ and c/c DMM-operated mice.
Results: In situ hybridisation demonstrated a correlation between the up-regulation of ER stress marker, BiP, and early signs of proteoglycan loss and cartilage damage in DMM-operated +/+ mice. Histological analysis revealed a significant reduction in OA severity in c/c mice compared with +/+ at 2 weeks post-DMM. This chondroprotective effect in c/c mice was associated with a higher ambient level of BiP protein prior to DMM and a delay in chondrocyte apoptosis. RNA-seq analysis suggested Xbp1-regulated networks to be significantly enriched in c/c mice at 2 weeks post-DMM. Compromising the ER through genetically ablating Atf6α, a key ER stress sensor, had no effect on DMM-induced OA severity.
Conclusion: Our studies indicate that an increased capacity to effectively manage increases in ER stress in articular cartilage due either to pre-conditioning as a result of prior exposure to ER stress or to genetic pre-disposition may be beneficial in delaying the onset of OA but once established, ER stress plays no significant role in disease progression.
Original language | English |
---|---|
Journal | Arthritis Research & Therapy |
DOIs | |
Publication status | Published - 11 Sept 2019 |
Keywords
- Endoplasmic reticulum (ER) stress
- osteoarthritis
- mouse
- medial meniscus destabilisation (DMM)
- ATF6α
- apoptosis
- histology
- RNAseq