Abstract
Porous thin‐sheet cobalt–copper–manganese mixed oxides modified microfibrous‐structured ZSM‐5 coating/PSSF catalysts were developed by the papermaking/sintering process, secondary growth process, and incipient wetness impregnating method. Paper‐like sintered stainless steel fibers (PSSF) support with sinter‐locked three‐dimensional networks was built by the papermaking/sintering process, and ZSM‐5 coatings were fabricated on the surface of stainless steel fibers by the secondary growth process. Catalytic combustion performances of isopropanol at different concentrations over the microfibrous‐structured Co–Cu–Mn (1:1:1)/ZSM‐5 coating/PSSF catalysts were measured to obtain kinetics data. The catalytic combustion kinetics was investigated using power–rate law model and Mars–Van Krevelen model. It was found that the Mars–Van Krevelen model provided fairly good fits to the kinetic data. The catalytic combustion reaction occurred by interaction between isopropanol molecule and oxygen‐rich centers of modified microfibrous‐structured ZSM‐5 coating/PSSF catalyst. The reaction activation energies for the reduction and oxidation steps are 60.3 and 57.19 kJ/mol, respectively.
Original language | English |
---|---|
Pages (from-to) | 620-630 |
Number of pages | 11 |
Journal | AIChE Journal |
Volume | 61 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 2015 |
Keywords
- catalysis
- fibers
- kinetic model
- isopropanol
- ZSM-5 coating