Abstract
Introduction
Chronic and debilitating low back pain is a common condition and a huge economic burden. Many cases are attributed to age-related degeneration of the intervertebral disc (IVD); however, age-related degeneration appears to occur at an accelerated rate in some individuals. We have previously demonstrated biomarkers of cellular senescence within the human IVD and suggested a role for senescence in IVD degeneration. Senescence occurs with ageing but can also occur prematurely in response to stress. We hypothesised that stress-induced premature senescence (SIPS) occurs within the IVD and here we have investigated the expression and production of caveolin-1, a protein that has been shown previously to be upregulated in SIPS.
Methods
Caveolin-1 gene expression in human nucleus pulposus (NP) cells was assessed by conventional and quantitative real-time polymerase chain reaction (PCR), and caveolin-1 protein expression was examined within human IVDs using immunohistochemistry. The correlation between caveolin-1 and p16INK4a (biomarker of cellular senescence) gene expression was investigated using quantitative real-time PCR
Results
Caveolin-1 gene expression and protein expression were demonstrated within the human IVD for the first time. NP cells from degenerate discs exhibited elevated levels of caveolin-1 which did not relate to increasing chronological age. A negative correlation was observed between gene expression for caveolin-1 and donor age, and no correlation was found between caveolin-1 protein expression and age. A positive correlation was identified between gene expression of caveolin-1 and p16INK4a.
Conclusion
Our findings are consistent with a role for caveolin-1 in degenerative rather than age-induced changes in the NP. Its expression in IVD tissue and its association with the senescent phenotype suggest that caveolin-1 and SIPS may play a prominent role in the pathogenesis of IVD degeneration.
Chronic and debilitating low back pain is a common condition and a huge economic burden. Many cases are attributed to age-related degeneration of the intervertebral disc (IVD); however, age-related degeneration appears to occur at an accelerated rate in some individuals. We have previously demonstrated biomarkers of cellular senescence within the human IVD and suggested a role for senescence in IVD degeneration. Senescence occurs with ageing but can also occur prematurely in response to stress. We hypothesised that stress-induced premature senescence (SIPS) occurs within the IVD and here we have investigated the expression and production of caveolin-1, a protein that has been shown previously to be upregulated in SIPS.
Methods
Caveolin-1 gene expression in human nucleus pulposus (NP) cells was assessed by conventional and quantitative real-time polymerase chain reaction (PCR), and caveolin-1 protein expression was examined within human IVDs using immunohistochemistry. The correlation between caveolin-1 and p16INK4a (biomarker of cellular senescence) gene expression was investigated using quantitative real-time PCR
Results
Caveolin-1 gene expression and protein expression were demonstrated within the human IVD for the first time. NP cells from degenerate discs exhibited elevated levels of caveolin-1 which did not relate to increasing chronological age. A negative correlation was observed between gene expression for caveolin-1 and donor age, and no correlation was found between caveolin-1 protein expression and age. A positive correlation was identified between gene expression of caveolin-1 and p16INK4a.
Conclusion
Our findings are consistent with a role for caveolin-1 in degenerative rather than age-induced changes in the NP. Its expression in IVD tissue and its association with the senescent phenotype suggest that caveolin-1 and SIPS may play a prominent role in the pathogenesis of IVD degeneration.
Original language | English |
---|---|
Article number | R87 |
Journal | Arthritis Research and Therapy |
Volume | 10 |
Issue number | 4 |
DOIs | |
Publication status | Published - 5 Aug 2008 |
Keywords
- Adult
- Aged
- metabolism: Aging, Premature
- metabolism: Biological Markers
- metabolism: Caveolin 1
- metabolism: Cyclin-Dependent Kinase Inhibitor p16
- Humans
- metabolism: Intervertebral Disk
- Middle Aged
- etiology: Spinal Diseases
- physiology: Stress, Physiological