TY - JOUR
T1 - Cell Membrane‐Coated Magnetic Nanocubes with a Homotypic Targeting Ability Increase Intracellular Temperature due to ROS Scavenging and Act as a Versatile Theranostic System for Glioblastoma Multiforme
AU - Tapeinos, Christos
AU - Tomatis, Francesca
AU - Battaglini, Matteo
AU - Larrañaga, Aitor
AU - Marino, Attilio
AU - Telleria, Iker Aguirrezabal
AU - Angelakeris, Makis
AU - Debellis, Doriana
AU - Drago, Filippo
AU - Brero, Francesca
AU - Arosio, Paolo
AU - Lascialfari, Alessandro
AU - Petretto, Andrea
AU - Sinibaldi, Edoardo
AU - Ciofani, Gianni
PY - 2019/9/7
Y1 - 2019/9/7
N2 - In this study, hybrid nanocubes composed of magnetite (Fe3O4) and manganese dioxide (MnO2), coated with U-251 MG cell-derived membranes (CM-NCubes) are synthesized. The CM-NCubes demonstrate a concentration-dependent oxygen generation (up to 15%), and, for the first time in the literature, an intracellular increase of temperature (6 °C) due to the exothermic scavenging reaction of hydrogen peroxide (H2O2) is showed. Internalization studies demonstrate that the CM-NCubes are internalized much faster and at a higher extent by the homotypic U-251 MG cell line compared to other cerebral cell lines. The ability of the CM-NCubes to cross an in vitro model of the blood-brain barrier is also assessed. The CM-NCubes show the ability to respond to a static magnet and to accumulate in cells even under flowing conditions. Moreover, it is demonstrated that 500 µg mL−1 of sorafenib-loaded or unloaded CM-NCubes are able to induce cell death by apoptosis in U-251 MG spheroids that are used as a tumor model, after their exposure to an alternating magnetic field (AMF). Finally, it is shown that the combination of sorafenib and AMF induces a higher enzymatic activity of caspase 3 and caspase 9, probably due to an increment in reactive oxygen species by means of hyperthermia.
AB - In this study, hybrid nanocubes composed of magnetite (Fe3O4) and manganese dioxide (MnO2), coated with U-251 MG cell-derived membranes (CM-NCubes) are synthesized. The CM-NCubes demonstrate a concentration-dependent oxygen generation (up to 15%), and, for the first time in the literature, an intracellular increase of temperature (6 °C) due to the exothermic scavenging reaction of hydrogen peroxide (H2O2) is showed. Internalization studies demonstrate that the CM-NCubes are internalized much faster and at a higher extent by the homotypic U-251 MG cell line compared to other cerebral cell lines. The ability of the CM-NCubes to cross an in vitro model of the blood-brain barrier is also assessed. The CM-NCubes show the ability to respond to a static magnet and to accumulate in cells even under flowing conditions. Moreover, it is demonstrated that 500 µg mL−1 of sorafenib-loaded or unloaded CM-NCubes are able to induce cell death by apoptosis in U-251 MG spheroids that are used as a tumor model, after their exposure to an alternating magnetic field (AMF). Finally, it is shown that the combination of sorafenib and AMF induces a higher enzymatic activity of caspase 3 and caspase 9, probably due to an increment in reactive oxygen species by means of hyperthermia.
UR - https://doi.org/10.1002/adhm.201900612
U2 - 10.1002/adhm.201900612
DO - 10.1002/adhm.201900612
M3 - Article
SN - 2192-2640
VL - 8
SP - 1
EP - 19
JO - Advanced Healthcare Materials
JF - Advanced Healthcare Materials
IS - 18
M1 - 1900612
ER -