Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging.

Khuloud T. Al-Jamal, Hannah Nerl, Karin H. Müller, Hanene Ali-Boucetta, Shouping Li, Peter D. Haynes, Joerg R. Jinschek, Maurizio Prato, Alberto Bianco, Kostas Kostarelos, Alexandra E. Porter

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH(3)(+)). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed that MWNT-NH(3)(+) were internalised in both phagocytic and non-phagocytic cells by any one of three mechanisms: (a) individually via membrane wrapping; (b) individually by direct membrane translocation; and (c) in clusters within vesicular compartments. At early time points following intracellular translocation, we noticed accumulation of nanotube material within various intracellular compartments, while a long-term (14-day) study using primary human macrophages revealed that MWNT-NH(3)(+) were able to escape vesicular (phagosome) entrapment by translocating directly into the cytoplasm.
    Original languageEnglish
    Pages (from-to)2627-2635
    Number of pages8
    JournalNanoscale
    Volume3
    Issue number6
    DOIs
    Publication statusPublished - Jun 2011

    Fingerprint

    Dive into the research topics of 'Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging.'. Together they form a unique fingerprint.

    Cite this