TY - JOUR
T1 - cGMP-dependent protein kinase 1 polymorphisms underlie renal sodium handling impairment
AU - Citterio, Lorena
AU - Ferrandi, Mara
AU - Carpini, Simona Delli
AU - Simonini, Marco
AU - Kuznetsova, Tatiana
AU - Molinari, Isabella
AU - Dell’ Antonio, Giacomo
AU - Lanzani, Chiara
AU - Merlino, Lino
AU - Brioni, Elena
AU - Staessen, Jan A.
AU - Bianchi, Giuseppe
AU - Manunta, Paolo
PY - 2013/12
Y1 - 2013/12
N2 - Defective pressure-natriuresis related to abnormalities in the natriuretic response has been associated with hypertension development. A major signaling pathway mediating pressure natriuresis involves the cGMP-dependent protein kinase 1 (PRKG1) that, once activated by Src kinase, inhibits renal Na(+) reabsorption via a direct action on basolateral Na-K ATPase and luminal Na-H exchanger type 3, as shown in renal tubuli of animals. Because a clear implication of PRKG1 in humans is still lacking, here we addressed whether PRKG1 polymorphisms affect pressure-natriuresis in patients. Naive hypertensive patients (n = 574), genotyped for PRKG1 rs1904694, rs7897633, and rs7905063 single nucleotide polymorphisms (SNPs), underwent an acute Na(+) loading, and the slope of the pressure-natriuresis relationship between blood pressure and Na(+) excretion was calculated. The underlying molecular mechanism was investigated by immunoblotting protein quantifications in human kidneys. The results demonstrate that the PRKG1 risk haplotype GAT (rs1904694, rs7897633, rs7905063, respectively) associates with a rightward shift of the pressure-natriuresis curve (0.017 ± 0.004 μEq/mm Hg per minute) compared with the ACC (0.0013 ± 0.003 μEq/mm Hg per minute; P = 0.001). In human kidneys, a positive correlation of protein expression levels between PRKG1 and Src (r = 0.83; P
AB - Defective pressure-natriuresis related to abnormalities in the natriuretic response has been associated with hypertension development. A major signaling pathway mediating pressure natriuresis involves the cGMP-dependent protein kinase 1 (PRKG1) that, once activated by Src kinase, inhibits renal Na(+) reabsorption via a direct action on basolateral Na-K ATPase and luminal Na-H exchanger type 3, as shown in renal tubuli of animals. Because a clear implication of PRKG1 in humans is still lacking, here we addressed whether PRKG1 polymorphisms affect pressure-natriuresis in patients. Naive hypertensive patients (n = 574), genotyped for PRKG1 rs1904694, rs7897633, and rs7905063 single nucleotide polymorphisms (SNPs), underwent an acute Na(+) loading, and the slope of the pressure-natriuresis relationship between blood pressure and Na(+) excretion was calculated. The underlying molecular mechanism was investigated by immunoblotting protein quantifications in human kidneys. The results demonstrate that the PRKG1 risk haplotype GAT (rs1904694, rs7897633, rs7905063, respectively) associates with a rightward shift of the pressure-natriuresis curve (0.017 ± 0.004 μEq/mm Hg per minute) compared with the ACC (0.0013 ± 0.003 μEq/mm Hg per minute; P = 0.001). In human kidneys, a positive correlation of protein expression levels between PRKG1 and Src (r = 0.83; P
U2 - 10.1161/hypertensionaha.113.01628
DO - 10.1161/hypertensionaha.113.01628
M3 - Article
C2 - 24060892
SN - 0194-911X
VL - 62
SP - 1027
EP - 1033
JO - Hypertension
JF - Hypertension
IS - 6
ER -