TY - JOUR
T1 - Challenges and opportunities for in vitro-in vivo extrapolation of aldehyde oxidase-mediated clearance: Towards a roadmap for quantitative translation
AU - Izat, Nihan
AU - Bolleddula, Jayaprakasam
AU - Abbasi, Armina
AU - Cheruzel, Lionel
AU - Jones, Robert
AU - Moss, Darren
AU - Ortega-Muro, Fatima
AU - Parmentier, Yannick
AU - Peterkin, Vincent C.
AU - Tian, Dan-Dan
AU - Venkatakrishnan, Karthik
AU - Zientek, Michael
AU - Barber, Jill
AU - Houston, James
AU - Galetin, Aleksandra
AU - Scotcher, Daniel
PY - 2023/8/28
Y1 - 2023/8/28
N2 - Underestimation of AO-mediated clearance by current in vitro assays leads to uncertainty in human dose projections, thereby reducing the likelihood of success in drug development. In the present studywe first evaluated the current drug development practices for AO substrates. Next, the overall predictive performance of in vitro-in vivo extrapolation (IVIVE) of unbound hepatic intrinsic clearance (CLint,u) and unbound hepatic intrinsic clearance by AO (CLint,u,AO) was assessed using a comprehensiveliterature database of in vitro (human cytosol/ S9/ hepatocytes) and in vivo (iv/oral) data collated for 22AO substrates (total of 100 datapoints from multiple studies). Correction for unbound fraction in the incubation (fuinc) was done by experimental data or in silico predictions. The fraction metabolized by AO (fmAO) determined via in vitro/in vivo approaches was found to be highly variable. The geometric mean fold errors (gmfe) for scaled CLint,u (mL/min/kg) were 10.4 for human hepatocytes, 5.6 for human liver cytosols, and 5.0 for human liver S9, respectively. Application of these gmfe’s as empirical scaling factors improved predictions (45-57% within 2-fold of observed) compared with no correction (11-27% within 2-fold), with the scaling factors qualified by leave-one-out cross-validation. A road map for quantitative translation was then proposed following a critical evaluation on the in vitro and clinical methodology to estimate in vivo fmAO. In conclusion, the study provides the most robust system-specific empirical scaling factors to-date as a pragmatic approach for the prediction of in vivo CLint,u,AO in the early stages of drug development.
AB - Underestimation of AO-mediated clearance by current in vitro assays leads to uncertainty in human dose projections, thereby reducing the likelihood of success in drug development. In the present studywe first evaluated the current drug development practices for AO substrates. Next, the overall predictive performance of in vitro-in vivo extrapolation (IVIVE) of unbound hepatic intrinsic clearance (CLint,u) and unbound hepatic intrinsic clearance by AO (CLint,u,AO) was assessed using a comprehensiveliterature database of in vitro (human cytosol/ S9/ hepatocytes) and in vivo (iv/oral) data collated for 22AO substrates (total of 100 datapoints from multiple studies). Correction for unbound fraction in the incubation (fuinc) was done by experimental data or in silico predictions. The fraction metabolized by AO (fmAO) determined via in vitro/in vivo approaches was found to be highly variable. The geometric mean fold errors (gmfe) for scaled CLint,u (mL/min/kg) were 10.4 for human hepatocytes, 5.6 for human liver cytosols, and 5.0 for human liver S9, respectively. Application of these gmfe’s as empirical scaling factors improved predictions (45-57% within 2-fold of observed) compared with no correction (11-27% within 2-fold), with the scaling factors qualified by leave-one-out cross-validation. A road map for quantitative translation was then proposed following a critical evaluation on the in vitro and clinical methodology to estimate in vivo fmAO. In conclusion, the study provides the most robust system-specific empirical scaling factors to-date as a pragmatic approach for the prediction of in vivo CLint,u,AO in the early stages of drug development.
KW - Aldehyde oxidases
KW - hepatic elimination
KW - in vitro-in vivo prediction (IVIVE)
M3 - Article
SN - 0090-9556
JO - Drug Metabolism and Disposition
JF - Drug Metabolism and Disposition
ER -