Abstract
Transmission electron microscopy (TEM) of ex-situ He ion irradiated bulk W has been performed to quantitatively compare the damage microstructure to that observed in regions of comparable thicknesses during in-situ ion irradiation with TEM experiments. Samples were irradiated to achieve He-appm/DPA ratios of 2000 and 500 at temperatures of 500 and 800 °C to 1.5 and 3.0 DPA. For irradiations at 500 °C, bubble diameters (∼2 nm) were larger and areal bubble densities (∼1012 bubbles/cm2) were lower than those in the in-situ experiments. This is attributed to greater amounts of He being retained in the ex-situ bulk experiments whereas in the in-situ experiments some may escape due to the proximity of surfaces. Dislocation loops were observed in all samples and were characterised as b = ±½<111> type with no b = <100> type loops. Dislocation loop populations were dominated by interstitial type (∼60%) agreeing with in-situ experiments. However, dislocation loops in this work were larger, ranging in size from 7 to 100 nm and large concentrations of entangled dislocation lines were observed in the bulk of the grain as compared to in the in-situ experiments
Original language | English |
---|---|
Pages (from-to) | 210-216 |
Journal | Fusion Engineering and Design |
Volume | 138 |
Early online date | 28 Nov 2018 |
DOIs | |
Publication status | Published - 1 Jan 2019 |