Characterisation of residual stresses generated by laser shock peening by neutron and synchrotron diffraction

A.D. Evans*, A. King, T. Pirling, P. Peyre, P.J. Withers

*Corresponding author for this work

Research output: Chapter in Book/Conference proceedingConference contribution

Abstract

The fatigue behaviour of engineering alloys can be significantly improved through the application of mechanical surface treatments. These processes generate significant compressive residual stresses near surface by inhomogeneous plastic deformation. In the case of mechanical surface treatments such as laser shock peening, certain burnishing and rolling techniques and ultrasonic impact treatment (UIT), the compressive residual stress layer can extend to a depth of the order of millimeters, with balancing tensile stresses located deeper. Techniques to characterise the residual stresses generated by such mechanical surface treatments non-destructively are mainly limited to diffraction methods using penetrating neutron and synchrotron X-ray radiations. The application of these radiation sources is illustrated here by the characterisation of residual strain distributions in a two types of specimens treated with laser shock peening (LSP). Analyses of diffraction peak broadening provide qualitative information concerning the depth to which the plastic deformation of the treatments extends. Two case studies of laser shock peening of titanium and aluminium alloys is presented to demonstrate the capabilities of neutron and synchrotron diffraction techniques in the field of residual stress characterisation of surface engineered material non-destructively.
Original languageEnglish
Title of host publicationEngineering Against Fracture
Subtitle of host publicationProceedings of the 1st Conference
EditorsSpiros Pantelakis, Chris Rodopoulos
Place of PublicationDordrecht
PublisherSpringer Nature
Pages383–398
Number of pages16
ISBN (Electronic)9781402094026
ISBN (Print)9781402094019, 9789048181193
DOIs
Publication statusPublished - 20 Feb 2009

Fingerprint

Dive into the research topics of 'Characterisation of residual stresses generated by laser shock peening by neutron and synchrotron diffraction'. Together they form a unique fingerprint.

Cite this