TY - JOUR
T1 - Characterisation of the bifunctional dihydrofolate synthase-folylpolyglutamate synthase from Plasmodium falciparum; a potential novel target for antimalarial antifolate inhibition
AU - Wang, Ping
AU - Wang, Qi
AU - Yang, Yonghong
AU - Coward, James K.
AU - Nzila, Alexis
AU - Sims, Paul F G
AU - Hyde, John E.
N1 - 073896, Wellcome Trust, United Kingdom
PY - 2010/7
Y1 - 2010/7
N2 - Unusually for a eukaryote, the malaria parasite Plasmodium falciparum expresses dihydrofolate synthase (DHFS) and folylpolyglutamate synthase (FPGS) as a single bifunctional protein. The two activities contribute to the essential pathway of folate biosynthesis and modification. The DHFS activity of recombinant PfDHFS-FPGS exhibited non-standard kinetics at high co-substrate (glutamate and ATP) concentrations, being partially inhibited by increasing concentrations of its principal substrate, dihydropteroate (DHP). Binding of DHP to the catalytic and inhibitory sites exhibited dissociation constants of 0.50μM and 1.25μM, respectively. DHFS activity measured under lower co-substrate concentrations, where data fitted the Michaelis-Menten equation, yielded apparent K m values of 0.88μM for DHP, 22.8μM for ATP and 5.97μM for glutamate. Of the substrates tested in FPGS assays, only tetrahydrofolate (THF) was efficiently converted to polyglutamylated forms, exhibiting standard kinetics with an apparent K m of 0.96μM; dihydrofolate, folate and the folate analogue methotrexate (MTX) were negligibly processed, emphasising the importance of the oxidation state of the pterin moiety. Moreover, MTX inhibited neither DHFS nor FPGS, even at high concentrations. Conversely, two phosphinate analogues of 7,8-dihydrofolate that mimic tetrahedral intermediates formed during DHFS- and FPGS-catalysed glutamylation were powerfully inhibitory. The K i value of an aryl phosphinate analogue against DHFS was 0.14μM and for an alkyl phosphinate against FPGS 0.091μM, with each inhibitor showing a high degree of specificity. This, combined with the absence of DHFS activity in humans, suggests PfDHFS-FPGS might represent a potential new drug target in the previously validated folate pathway of P. falciparum. © 2010 Elsevier B.V.
AB - Unusually for a eukaryote, the malaria parasite Plasmodium falciparum expresses dihydrofolate synthase (DHFS) and folylpolyglutamate synthase (FPGS) as a single bifunctional protein. The two activities contribute to the essential pathway of folate biosynthesis and modification. The DHFS activity of recombinant PfDHFS-FPGS exhibited non-standard kinetics at high co-substrate (glutamate and ATP) concentrations, being partially inhibited by increasing concentrations of its principal substrate, dihydropteroate (DHP). Binding of DHP to the catalytic and inhibitory sites exhibited dissociation constants of 0.50μM and 1.25μM, respectively. DHFS activity measured under lower co-substrate concentrations, where data fitted the Michaelis-Menten equation, yielded apparent K m values of 0.88μM for DHP, 22.8μM for ATP and 5.97μM for glutamate. Of the substrates tested in FPGS assays, only tetrahydrofolate (THF) was efficiently converted to polyglutamylated forms, exhibiting standard kinetics with an apparent K m of 0.96μM; dihydrofolate, folate and the folate analogue methotrexate (MTX) were negligibly processed, emphasising the importance of the oxidation state of the pterin moiety. Moreover, MTX inhibited neither DHFS nor FPGS, even at high concentrations. Conversely, two phosphinate analogues of 7,8-dihydrofolate that mimic tetrahedral intermediates formed during DHFS- and FPGS-catalysed glutamylation were powerfully inhibitory. The K i value of an aryl phosphinate analogue against DHFS was 0.14μM and for an alkyl phosphinate against FPGS 0.091μM, with each inhibitor showing a high degree of specificity. This, combined with the absence of DHFS activity in humans, suggests PfDHFS-FPGS might represent a potential new drug target in the previously validated folate pathway of P. falciparum. © 2010 Elsevier B.V.
KW - Antifolate inhibitor studies
KW - Biphasic kinetics
KW - Folate metabolism
KW - Methotrexate
KW - Phosphinate analogues of folate
KW - Substrate specificity
U2 - 10.1016/j.molbiopara.2010.03.012
DO - 10.1016/j.molbiopara.2010.03.012
M3 - Article
C2 - 20350571
SN - 0166-6851
VL - 172
SP - 41
EP - 51
JO - Molecular and biochemical parasitology
JF - Molecular and biochemical parasitology
IS - 1
ER -