Characterization of the structure and permeability of titanium foams for spinal fusion devices

R. Singh, P. D. Lee, Trevor C. Lindley, R. J. Dashwood, Emilie Ferrie, T. Imwinkelried

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Titanium foams produced via the space-holder method are used for spinal fusion devices since their combination of an open-cell structure and bone-like mechanical properties promises potentially excellent bone ingrowth. Earlier studies have indicated that the size of the pores and interconnects must be greater than 100 μm for effective bone ingrowth and vascularization. Hence, the quantification of the pore and interconnect size is required for efficient scaffold design. In this study, microcomputed tomography (μCT) was used to obtain the three-dimensional (3D) structure of Ti foams with three levels of porosity (51%, 65% and 78%). Novel algorithms were then applied to quantify both the pore and interconnect size of Ti foams as a function of porosity. All foams possessed a modal pore and interconnect size in excess of 300 μm, satisfying the requirement of being greater than 100 μm. The pore and interconnect size also dominates the flow properties or permeability of open-cell structures. Therefore, the μCT data was also used to generate a mesh for computational fluid dynamics analysis to predict the permeability. The calculated permeability (117-163 × 10-12 m2 depending on direction) for the Ti foams with 65% porosity was first validated against experimental measurements (98-163 × 10-12 m2) and then compared to prior authors' measurements in healthy cancellous bovine bone (233-465 × 10-12 m2). The close match among all the permeability values proves the suitability of the material for biomedical skeletal-implant applications. © 2008 Acta Materialia Inc.
    Original languageEnglish
    Pages (from-to)477-487
    Number of pages10
    JournalActa Biomaterialia
    Volume5
    Issue number1
    DOIs
    Publication statusPublished - Jan 2009

    Keywords

    • Microcomputed tomography
    • Permeability
    • Porosity
    • Tissue scaffold
    • Titanium foams

    Fingerprint

    Dive into the research topics of 'Characterization of the structure and permeability of titanium foams for spinal fusion devices'. Together they form a unique fingerprint.

    Cite this