Abstract
Relaying conformational change over several nanometers is central to the function of allosterically regulated proteins. Replicating this mechanism artificially would provide important communication tools, but requires nanometer-sized molecules that reversibly switch between defined shapes in response to signaling molecules. In this work, 1.8 nm long rigid rod oligo(phenylene-ethynylene)s are scaffolds for switchable multi-squaramide hydrogen-bond relays. Each relay can adopt either a parallel or an antiparallel orientation relative to the scaffold; the preferred orientation is dictated by a director group at one end. An amine director responded to proton signals, with acid-base cycles producing multiple reversible changes in relay orientation that were reported by a terminal NH, which is 1.8 nm distant. Moreover, a chemical fuel acted as a dissipative signal. As the fuel was consumed, the relay reverted to its original orientation, illustrating how information from out-of-equilibrium molecular signals can be communicated to a distant site.
Original language | English |
---|---|
Article number | e202307841 |
Journal | Angewandte Chemie International Edition |
Early online date | 10 Jul 2023 |
DOIs | |
Publication status | E-pub ahead of print - 10 Jul 2023 |
Keywords
- Information relay
- conformational switch
- squaramide array
- chemical fuel