Cholera toxin and Escherichia coli enterotoxin B-subunits inhibit macrophage-mediated antigen processing and presentation: Evidence for antigen persistence in non-acidic recycling endosomal compartments

Douglas Millar, Douglas G. Millar, Timothy R. Hirst

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Cholera toxin (Ctx) and the closely related Escherichia coli heat-labile enterotoxin (Etx) not only act as mediators of diarrhoeal disease but also exert potent immunomodulatory properties on mammalian immune systems. The toxins normally exert their diarrhoeagenic effects by initiating receptor-mediated uptake into vesicles that enter a retrograde trafficking pathway, circumventing degradative compartments and targeting them to the trans-Golgi network (TGN) and endoplasmic reticulum. Here, we examine whether receptor-mediated binding and cellular entry by the toxin B-subunits also lead to concomitant changes in uptake and trafficking of exogenous antigens that could contribute to the potent immunomodulatory properties of these toxins. Treatment of the macrophage (J774.2) cell line with Etx B-subunit (EtxB) resulted in EtxB transport to the TGN and also led to the formation of large, translucent, non-acidic, EtxB-devoid vacuoles. When exogenous antigens were added, EtxB-treated cells were found to be proficient in both internalization of ovalbumin (OVA) and phagocytosis of bacterial particles. However, the internalized OVA, instead of trafficking along a lysosome-directed endocytic pathway via acidified endosomes, persisted in a non-acidic, light-density compartment that was distinct from the translucent vacuoles. The rerouted OVA did not co-localize with the endosomal markers rab5 or rab11, nor with EtxB, but was retained in a transferrin receptor-positive compartment. The failure of OVA to enter the late endosomal/lysosomal compartments correlated with a striking inhibition of OVA peptide processing and presentation to OVA-responsive CD4 + T-cells. CtxB also modulated OVA trafficking and inhibited antigen presentation. These findings demonstrate that the B-subunits of Ctx and Etx alter the progression of exogenous antigens along the endocytic processing pathway, and prevent or delay efficient epitope presentation and T-cell stimulation. The formation of such 'antigen depots' could contribute to the immunomodulatory properties of these bacterial virulence determinants.
    Original languageEnglish
    Pages (from-to)311-329
    Number of pages18
    JournalCellular Microbiology
    Volume3
    Issue number5
    DOIs
    Publication statusPublished - 2001

    Fingerprint

    Dive into the research topics of 'Cholera toxin and Escherichia coli enterotoxin B-subunits inhibit macrophage-mediated antigen processing and presentation: Evidence for antigen persistence in non-acidic recycling endosomal compartments'. Together they form a unique fingerprint.

    Cite this