Abstract
Evolutionary, pattern forming partial differential equations (PDEs) are often derived as limiting descriptions of microscopic, kinetic theory-based models of molecular processes (e.g., reaction and diffusion). The PDE dynamic behavior can be probed through direct simulation (time integration) or, more systematically, through stability/bifurcation calculations; time-stepper-based approaches, like the Recursive Projection Method [Shroff, G. M. & Keller, H. B. (1993) SIAM J. Numer. Anal. 30, 1099-1120] provide an attractive framework for the latter. We demonstrate an adaptation of this approach that allows for a direct, effective ("coarse") bifurcation analysis of microscopic, kinetic-based models; this is illustrated through a comparative study of the FitzHugh-Nagumo PDE and of a corresponding Lattice-Boltzmann model.
Original language | English |
---|---|
Pages (from-to) | 9840-9843 |
Number of pages | 3 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 97 |
Issue number | 18 |
Publication status | Published - 29 Aug 2000 |