TY - JOUR
T1 - Colorectal cancer incidence trends in the United States and United Kingdom: Evidence of right- to left-sided biological gradients with implications for screening
AU - Meza, Rafael
AU - Jeon, Jihyoun
AU - Renehan, Andrew G.
AU - Luebeck, E. Georg
N1 - Cancer research Cancer Res. 2010 Jul 1;70(13):5419-5429. Epub 2010 Jun 8.
PY - 2010/7/1
Y1 - 2010/7/1
N2 - Several lines of evidence support the premise that screening colonoscopy reduces colorectal cancer (CRC) incidence, but there may be differential benefits for right- and left-sided tumors. To better understand the biological basis of this differential effect, we derived biomathematical models of CRC incidence trends in U.S. and U.K. populations, representing relatively high- and low-prevalence screening, respectively. Using the Surveillance Epidemiology and End Results (SEER) and the Office for National Statistics (ONS) registries (both 1973-2006), we derived stochastic multistage clonal expansion (MSCE) models for right-sided (proximal colon) and left-sided (distal colon and rectal) tumors. The MSCE concept is based on the initiation-promotion-progression paradigm of carcinogenesis and provides a quantitative description of natural tumor development from the initiation of an adenoma (via biallelic tumor suppressor gene inactivation) to the clinical detection of CRC. From 1,228,036 (SEER: 340,582; ONS: 887,454) cases, parameter estimates for models adjusted for calendar-year and birth-cohort effects showed that adenoma initiation rates were higher for right-sided tumors, whereas, paradoxically, adenoma growth rates were higher for left-sided tumors. The net effect was a higher cancer risk in the right colon only after age 70 years. Consistent with this finding, simulations of adenoma development predicted that the relative prevalence for right- versus left-sided tumors increases with increasing age, a differential effect most striking in women. Using a realistic biomathematical description of CRC development for two nationally representative registries, we show age- and sex-dependent biological gradients for right- and left-sided colorectal tumors. These findings argue for an age-, sex-, and site-directed approach to CRC screening. ©2010 AACR.
AB - Several lines of evidence support the premise that screening colonoscopy reduces colorectal cancer (CRC) incidence, but there may be differential benefits for right- and left-sided tumors. To better understand the biological basis of this differential effect, we derived biomathematical models of CRC incidence trends in U.S. and U.K. populations, representing relatively high- and low-prevalence screening, respectively. Using the Surveillance Epidemiology and End Results (SEER) and the Office for National Statistics (ONS) registries (both 1973-2006), we derived stochastic multistage clonal expansion (MSCE) models for right-sided (proximal colon) and left-sided (distal colon and rectal) tumors. The MSCE concept is based on the initiation-promotion-progression paradigm of carcinogenesis and provides a quantitative description of natural tumor development from the initiation of an adenoma (via biallelic tumor suppressor gene inactivation) to the clinical detection of CRC. From 1,228,036 (SEER: 340,582; ONS: 887,454) cases, parameter estimates for models adjusted for calendar-year and birth-cohort effects showed that adenoma initiation rates were higher for right-sided tumors, whereas, paradoxically, adenoma growth rates were higher for left-sided tumors. The net effect was a higher cancer risk in the right colon only after age 70 years. Consistent with this finding, simulations of adenoma development predicted that the relative prevalence for right- versus left-sided tumors increases with increasing age, a differential effect most striking in women. Using a realistic biomathematical description of CRC development for two nationally representative registries, we show age- and sex-dependent biological gradients for right- and left-sided colorectal tumors. These findings argue for an age-, sex-, and site-directed approach to CRC screening. ©2010 AACR.
U2 - 10.1158/0008-5472.CAN-09-4417
DO - 10.1158/0008-5472.CAN-09-4417
M3 - Article
SN - 1538-7445
VL - 70
SP - 5419
EP - 5429
JO - Cancer Research
JF - Cancer Research
IS - 13
ER -