Abstract
Advanced additive manufacturing technologies, namely Biomanufacturing, are being used to fabricate scaffolds with controlled architecture for tissue engineering applications. These technologies combined with computer-aided design (CAD) enable to produce three-dimensional structures layer-by-layer in a multitude of biomaterials. Actual prediction of the effective mechanical properties of scaffolds produced by Biomanufacturing, is very important for tissue engineering applications. A novel computer based technique for scaffold design is topological optimisation. Topological optimisation is a form of “shape” optimisation, usually referred to as “layout” optimisation. The goal of topological optimisation is to find the best use of material for a body that is subjected to either a single load or a multiple load distribution. In this research work, a topological optimization strategy is presented to find out the best material use for a construct subject to either a single load or a multiple load distribution, maximising its mechanical behaviour under tensile and shear stress solicitations. The proposed topological optimization scheme enables the design of ideal topological architectures based on existing biologic Micro-CT data for the design of biomimetic scaffolds.
Original language | English |
---|---|
Pages (from-to) | 159-166 |
Number of pages | 7 |
Journal | Procedia Engineering |
Volume | 110 |
DOIs | |
Publication status | Published - 2015 |
Keywords
- Computational technologies
- Topological optimization
- Tissue engineering
- Scaffolds
- Micro-CT data