TY - JOUR
T1 - Common cancer-associated imbalances in the DNA damage response confer sensitivity to single agent ATR inhibition
AU - Edmondson, RJ
AU - Middleton, F
AU - Patterson, M
AU - Elstob, C
AU - Fordham, S
AU - Herriott, A
AU - Wade, M
AU - McCormick, A
AU - May, FEB
AU - Allan, J
AU - Pollard, J
AU - Curtin, NJ
PY - 2015
Y1 - 2015
N2 - ATR is an attractive target in cancer therapy because it signals replication stress and DNA lesions for repair and to S/G2 checkpoints. Cancer-specific defects in the DNA damage response (DDR) may render cancer cells vulnerable to ATR inhibition alone. We determined the cytotoxicity of the ATR inhibitor VE-821 in isogenically matched cells with DDR imbalance. Cell cycle arrest, DNA damage accumulation and repair were determined following VE-821 exposure. Defects in homologous recombination repair (HRR: ATM, BRCA2 and XRCC3) and base excision repair (BER: XRCC1) conferred sensitivity to VE-821. Surprisingly, the loss of different components of the trimeric non-homologous end-joining (NHEJ) protein DNA-PK had opposing effects. Loss of the DNA-binding component, Ku80, caused hypersensitivity to VE-821, but loss of its partner catalytic subunit, DNA-PKcs, did not. Unexpectedly, VE-821 was particularly cytotoxic to human and hamster cells expressing high levels of DNA-PKcs. High DNA-PKcs was associated with replicative stress and activation of the DDR. VE-821 suppressed HRR, determined by RAD51 focus formation, to a greater extent in cells with high DNA-PKcs. Defects in HRR and BER and high DNA-PKcs expression, that are common in cancer, confer sensitivity to ATR inhibitor monotherapy and may be developed as predictive biomarkers for personalised medicine.
AB - ATR is an attractive target in cancer therapy because it signals replication stress and DNA lesions for repair and to S/G2 checkpoints. Cancer-specific defects in the DNA damage response (DDR) may render cancer cells vulnerable to ATR inhibition alone. We determined the cytotoxicity of the ATR inhibitor VE-821 in isogenically matched cells with DDR imbalance. Cell cycle arrest, DNA damage accumulation and repair were determined following VE-821 exposure. Defects in homologous recombination repair (HRR: ATM, BRCA2 and XRCC3) and base excision repair (BER: XRCC1) conferred sensitivity to VE-821. Surprisingly, the loss of different components of the trimeric non-homologous end-joining (NHEJ) protein DNA-PK had opposing effects. Loss of the DNA-binding component, Ku80, caused hypersensitivity to VE-821, but loss of its partner catalytic subunit, DNA-PKcs, did not. Unexpectedly, VE-821 was particularly cytotoxic to human and hamster cells expressing high levels of DNA-PKcs. High DNA-PKcs was associated with replicative stress and activation of the DDR. VE-821 suppressed HRR, determined by RAD51 focus formation, to a greater extent in cells with high DNA-PKcs. Defects in HRR and BER and high DNA-PKcs expression, that are common in cancer, confer sensitivity to ATR inhibitor monotherapy and may be developed as predictive biomarkers for personalised medicine.
U2 - 10.18632/oncotarget.6136
DO - 10.18632/oncotarget.6136
M3 - Article
SN - 1949-2553
VL - 6
SP - 32396
EP - 32409
JO - Oncotarget
JF - Oncotarget
IS - 32
ER -