Abstract
This paper discusses the interrelations between physics and biology. Particularly, we analyse the approaches for reconstructing the emergent properties of physical or biological systems. We propose approaches to scale emergence according to the degree of state-dependency of the system's component properties. Since the component properties of biological systems are state-dependent to a high extent, biological emergence should be considered as very strong emergence - i.e. its reconstruction would require a lot of information about state-dependency of its component properties. However, due to its complexity and volume, this information cannot be handled in the naked human brain, or on the back of an envelope. To solve this problem, biological emergence can be reconstructed in silico based on experimentally determined rate laws and parameter values of the living cell. According to some rough calculations, the silicon human might comprise the mathematical descriptions of around 10(5) interactions. This is not a small number, but taking into account the exponentially increase of computational power, it should not prove to be our principal limitation. The bigger challenges will be located in different areas. For example they may be related to the observer effect - the limitation to measuring a system's component properties without affecting the system. Another obstacle may be hidden in the tradition of "shaving away" all "unnecessary" assumptions (the so-called Occam's razor) that, in fact, reflects the intention to model the system as simply as possible and thus to deem the emergence to be less strong than it possibly is. We argue here that that Occam's razor should be replaced with the law of completeness.
Original language | English |
---|---|
Pages (from-to) | 69-74 |
Number of pages | 5 |
Journal | Progress in biophysics and molecular biology |
Volume | 111 |
Issue number | 2-3 |
DOIs | |
Publication status | Published - Apr 2013 |
Keywords
- Observer effect
- Occam's razor
- Silicon human
- Strong emergence
- Systems biology