TY - JOUR
T1 - Conformational study of the natural iron chelator myo-inositol 1,2,3-trisphosphate using restrained/flexible analogues and computational analysis
AU - Mansell, David
AU - Veiga, Nicolás
AU - Torres, Julia
AU - Etchells, Laura L.
AU - Bryce, Richard A.
AU - Kremer, Carlos
AU - Freeman, Sally
PY - 2010/11/13
Y1 - 2010/11/13
N2 - Myo-Inositol 1,2,3-trisphosphate [Ins(1,2,3)P3], a component in mammalian cells, possesses the correct chemical properties of an intracellular iron transit ligand. Here we have examined the conformation of the Ins(1,2,3)P3-Fe3+ complex. The synthesis and antioxidant properties of 4,6-carbonate-myo-inositol 1,2,3,5-tetrakisphosphate [4,6-carbonate Ins(1,2,3,5)P4], which is locked in the unstable penta-axial chair conformation and 1,2,3-trisphosphoglycerol, a flexible acyclic analogue of Ins(1,2,3)P3, are reported. 4,6-Carbonate Ins(1,2,3,5)P4 caused complete inhibition of iron-catalysed hydroxyl radical (HȮ) formation at 100 μM, thereby resembling Ins(1,2,3)P3 and supporting a penta-axial chair binding conformation. In contrast, 1,2,3-trisphosphoglycerol was shown to have incomplete antioxidant properties. In support of experimental observations, we have applied high-level density functional calculations to the binding of Ins(1,2,3)P3 to iron. This study provides evidence that Fe3+ binds tightly to the less stable penta-axial conformation of Ins(1,2,3)P3 using terminal and bridging phosphate oxygens, thought to also contain a tightly bound water molecule or hydroxyl ligand in the complex. © 2010 Elsevier Ltd. All rights reserved.
AB - Myo-Inositol 1,2,3-trisphosphate [Ins(1,2,3)P3], a component in mammalian cells, possesses the correct chemical properties of an intracellular iron transit ligand. Here we have examined the conformation of the Ins(1,2,3)P3-Fe3+ complex. The synthesis and antioxidant properties of 4,6-carbonate-myo-inositol 1,2,3,5-tetrakisphosphate [4,6-carbonate Ins(1,2,3,5)P4], which is locked in the unstable penta-axial chair conformation and 1,2,3-trisphosphoglycerol, a flexible acyclic analogue of Ins(1,2,3)P3, are reported. 4,6-Carbonate Ins(1,2,3,5)P4 caused complete inhibition of iron-catalysed hydroxyl radical (HȮ) formation at 100 μM, thereby resembling Ins(1,2,3)P3 and supporting a penta-axial chair binding conformation. In contrast, 1,2,3-trisphosphoglycerol was shown to have incomplete antioxidant properties. In support of experimental observations, we have applied high-level density functional calculations to the binding of Ins(1,2,3)P3 to iron. This study provides evidence that Fe3+ binds tightly to the less stable penta-axial conformation of Ins(1,2,3)P3 using terminal and bridging phosphate oxygens, thought to also contain a tightly bound water molecule or hydroxyl ligand in the complex. © 2010 Elsevier Ltd. All rights reserved.
KW - Chair conformation
KW - Computational analysis
KW - Inositol phosphates
KW - Iron chelation
KW - Myo-Inositol 1,2,3-trisphosphate
U2 - 10.1016/j.tet.2010.09.033
DO - 10.1016/j.tet.2010.09.033
M3 - Article
SN - 0040-4020
VL - 66
SP - 8949
EP - 8957
JO - Tetrahedron
JF - Tetrahedron
IS - 46
ER -