Abstract
Many computer algorithms have been developed to construct experimental designs that are D-optimum for the fixed parameters of a statistical model. However, the case when the interest is in the variance components has not received much attention. This problem has similarities with that of designing experiments aiming at D-optimality for the fixed parameters of nonlinear models as its solution depends on the values of the unknown parameters that need to be estimated. An algorithm that can be used to construct locally and pseudo-Bayesian A- and D-optimum designs for the variance components in a linear mixed effects model, or for variance ratios, when there is a three-stage crossed or nested variability structure is proposed. Suitable visualizations of the results in order to help the assessment of the robustness of the designs against possible inaccuracies of the assumptions about the true values of the variance components used in the selection of the designs are recommended. © 2013 Elsevier Inc. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 1168-1177 |
Number of pages | 9 |
Journal | Computational Statistics and Data Analysis |
Volume | 71 |
Early online date | 11 Oct 2012 |
DOIs | |
Publication status | Published - Mar 2014 |
Keywords
- A-optimality
- Crossed variability structure
- D-optimality
- Local optimality
- Nested variability structure
- Pseudo-Bayesian optimality
Fingerprint
Dive into the research topics of 'Construction of experimental designs for estimating variance components'. Together they form a unique fingerprint.Impacts
-
Novel Statistical Methods for Optimising Production of Disc Brake Pads
Alexander Donev (Participant), Liam Brown (Participant) & Sergio Loeza-Serrano (Participant)
Impact: Technological, Economic, Health and wellbeing