TY - JOUR
T1 - Contributing vertices-based Minkowski sum computation of convex polyhedra
AU - Barki, Hichem
AU - Denis, Florence
AU - Dupont, Florent
PY - 2009/7
Y1 - 2009/7
N2 - Minkowski sum is an important operation. It is used in many domains such as: computer-aided design, robotics, spatial planning, mathematical morphology, and image processing. We propose a novel algorithm, named the Contributing Vertices-based Minkowski Sum (CVMS) algorithm for the computation of the Minkowski sum of convex polyhedra. The CVMS algorithm allows to easily obtain all the facets of the Minkowski sum polyhedron only by examining the contributing vertices-a concept we introduce in this work, for each input facet. We exploit the concept of contributing vertices to propose the Enhanced and Simplified Slope Diagram-based Minkowski Sum (ESSDMS) algorithm, a slope diagram-based Minkowski sum algorithm sharing some common points with the approach proposed by Wu et al. [Wu Y, Shah J, Davidson J. Improvements to algorithms for computing the Minkowski sum of 3-polytopes. Comput Aided Des. 2003; 35(13): 1181-92]. The ESSDMS algorithm does not embed input polyhedra on the unit sphere and does not need to perform stereographic projections. Moreover, the use of contributing vertices brings up more simplifications and improves the overall performance. The implementations for the mentioned algorithms are straightforward, use exact number types, produce exact results, and are based on CGAL, the Computational Geometry Algorithms Library. More examples and results of the CVMS algorithm for several convex polyhedra can be found at http://liris.cnrs.fr/hichem.barki/mksum/CVMS-convex.
AB - Minkowski sum is an important operation. It is used in many domains such as: computer-aided design, robotics, spatial planning, mathematical morphology, and image processing. We propose a novel algorithm, named the Contributing Vertices-based Minkowski Sum (CVMS) algorithm for the computation of the Minkowski sum of convex polyhedra. The CVMS algorithm allows to easily obtain all the facets of the Minkowski sum polyhedron only by examining the contributing vertices-a concept we introduce in this work, for each input facet. We exploit the concept of contributing vertices to propose the Enhanced and Simplified Slope Diagram-based Minkowski Sum (ESSDMS) algorithm, a slope diagram-based Minkowski sum algorithm sharing some common points with the approach proposed by Wu et al. [Wu Y, Shah J, Davidson J. Improvements to algorithms for computing the Minkowski sum of 3-polytopes. Comput Aided Des. 2003; 35(13): 1181-92]. The ESSDMS algorithm does not embed input polyhedra on the unit sphere and does not need to perform stereographic projections. Moreover, the use of contributing vertices brings up more simplifications and improves the overall performance. The implementations for the mentioned algorithms are straightforward, use exact number types, produce exact results, and are based on CGAL, the Computational Geometry Algorithms Library. More examples and results of the CVMS algorithm for several convex polyhedra can be found at http://liris.cnrs.fr/hichem.barki/mksum/CVMS-convex.
KW - Computer-aided design
KW - Contributing vertices
KW - Convex hull
KW - Minkowski sum
KW - Slope diagram
UR - http://www.scopus.com/inward/record.url?scp=67349273728&partnerID=8YFLogxK
U2 - 10.1016/j.cad.2009.03.008
DO - 10.1016/j.cad.2009.03.008
M3 - Article
AN - SCOPUS:67349273728
SN - 0010-4485
VL - 41
SP - 525
EP - 538
JO - CAD Computer Aided Design
JF - CAD Computer Aided Design
IS - 7
ER -