TY - JOUR
T1 - Convergence and Rates for Fixed-Interval Multiple-Track Smoothing Using $k$-Means Type Optimization
AU - Thorpe, Matthew
AU - Johansen, Adam
PY - 2016
Y1 - 2016
N2 - We address the task of estimating multiple trajectories from unlabeled data. This problem arises in many settings, one could think of the construction of maps of transport networks from passive observation of travellers, or the reconstruction of the behaviour of uncooperative vehicles from external observations, for example. There are two coupled problems. The first is a data association problem: how to map data points onto individual trajectories. The second is, given a solution to the data association problem, to estimate those trajectories. We construct estimators as a solution to a regularized variational problem (to which approximate solutions can be obtained via the simple, efficient and widespread k-means method) and show that, as the number of data points, n, increases, these estimators exhibit stable behaviour. More precisely, we show that they converge in an appropriate Sobolev space in probability and with rate n^{−1/2}.
AB - We address the task of estimating multiple trajectories from unlabeled data. This problem arises in many settings, one could think of the construction of maps of transport networks from passive observation of travellers, or the reconstruction of the behaviour of uncooperative vehicles from external observations, for example. There are two coupled problems. The first is a data association problem: how to map data points onto individual trajectories. The second is, given a solution to the data association problem, to estimate those trajectories. We construct estimators as a solution to a regularized variational problem (to which approximate solutions can be obtained via the simple, efficient and widespread k-means method) and show that, as the number of data points, n, increases, these estimators exhibit stable behaviour. More precisely, we show that they converge in an appropriate Sobolev space in probability and with rate n^{−1/2}.
U2 - https://projecteuclid.org/euclid.ejs/1480734075
DO - https://projecteuclid.org/euclid.ejs/1480734075
M3 - Article
SN - 1935-7524
VL - 10
SP - 3693
EP - 3722
JO - Electronic Journal of Statistics
JF - Electronic Journal of Statistics
IS - 2
ER -