Corrosion of Mg-9Al alloy with minor alloying elements (Mn, Nd, Ca, Y and Sn)

B. Mingo*, R. Arrabal, M. Mohedano, C. L. Mendis, R. del Olmo, E. Matykina, N. Hort, M. C. Merino, A. Pardo

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    46 Downloads (Pure)

    Abstract

    Microstructure and corrosion behaviour of a Mg-9Al alloy with minor alloying additions (Mn, Y, Nd, Ca and Sn) are evaluated. All of the additions form Al-rich intermetallics with varying amounts of Fe, while Ca and Sn are also incorporated into the eutectic β-phase (β-Mg17Al12). Special attention is given to the surface potential values of the microconstituents, which are related to the formation of microgalvanic couples. Scanning Kelvin Probe Force Microscopy (SKPFM) measurements revealed that all the alloying elements, except Sn, reduced the potential difference between the secondary phases and the matrix, which is the main reason for the improvement of the corrosion resistance of Mn-, Y- and Nd-modified alloys. The beneficial effect of Ca is additionally related to the microstructure refinement and an increased area fraction of the β-phase.

    Original languageEnglish
    Pages (from-to)48-58
    Number of pages11
    JournalMaterials and Design
    Volume130
    Early online date17 May 2017
    DOIs
    Publication statusPublished - 15 Sept 2017

    Keywords

    • Corrosion
    • EPMA
    • Magnesium
    • Rare earth
    • SKPFM
    • Volta potential

    Fingerprint

    Dive into the research topics of 'Corrosion of Mg-9Al alloy with minor alloying elements (Mn, Nd, Ca, Y and Sn)'. Together they form a unique fingerprint.

    Cite this