Covariation Is a Poor Measure of Molecular Coevolution.

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Recent developments in the analysis of amino acid covariation are leading to breakthroughs in protein structure prediction, protein design, and prediction of the interactome. It is assumed that observed patterns of covariation are caused by molecular coevolution, where substitutions at one site affect the evolutionary forces acting at neighboring sites. Our theoretical and empirical results cast doubt on this assumption. We demonstrate that the strongest coevolutionary signal is a decrease in evolutionary rate and that unfeasibly long times are required to produce coordinated substitutions. We find that covarying substitutions are mostly found on different branches of the phylogenetic tree, indicating that they are independent events that may or may not be attributable to coevolution. These observations undermine the hypothesis that molecular coevolution is the primary cause of the covariation signal. In contrast, we find that the pairs of residues with the strongest covariation signal tend to have low evolutionary rates, and that it is this low rate that gives rise to the covariation signal. Slowly evolving residue pairs are disproportionately located in the protein's core, which explains covariation methods' ability to detect pairs of residues that are close in three dimensions. These observations lead us to propose the "coevolution paradox": The strength of coevolution required to cause coordinated changes means the evolutionary rate is so low that such changes are highly unlikely to occur. As modern covariation methods may lead to breakthroughs in structural genomics, it is critical to recognize their biases and limitations.
    Original languageEnglish
    Pages (from-to)2456-2468
    Number of pages13
    JournalMolecular Biology and Evolution
    Volume32
    Issue number9
    DOIs
    Publication statusPublished - Sept 2015

    Keywords

    • coevolution
    • covariation
    • molecular evolution

    Fingerprint

    Dive into the research topics of 'Covariation Is a Poor Measure of Molecular Coevolution.'. Together they form a unique fingerprint.

    Cite this