Crystal plasticity study on stress and strain partitioning in a measured 3D dual phase steel microstructure

M. Diehl*, D. An, P. Shanthraj, S. Zaefferer, F. Roters, D. Raabe

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Dual phase steels are advanced high strength alloys typically used for structural parts and reinforcements in car bodies. Their good combination of strength and ductility and their lean composition render them an economically competitive option for realizing multiple lightweight design options in automotive engineering. The mechanical response of dual phase steels is the result of the strain and stress partitioning among the ferritic and martensitic phases and the individual crystallographic grains and subgrains of these phases. Therefore, understanding how these microstructural features influence the global and local mechanical properties is of utmost importance for the design of improved dual phase steel grades. While multiple corresponding simulation studies have been dedicated to the investigation of dual phase steel micromechanics, numerical tools and experiment techniques for characterizing and simulating real 3D microstructures of such complex materials have been emerged only recently. Here we present a crystal plasticity simulation study based on a 3D dual phase microstructure which is obtained by EBdD tomography, also referred to as 3D EBdD (EBdD—electron backscatter diffraction). In the present case we utilized a 3D EBdD serial sectioning approach based on mechanical polishing. Moreover, sections of the 3D microstructure are used as 2D models to study the effect of this simplification on the stress and strain distribution. The simulations are conducted using a phenomenological crystal plasticity model and a spectral method approach implemented in the Düsseldorf Advanced Material Simulation Kit (DAMAdK).

    Original languageEnglish
    Pages (from-to)311-323
    Number of pages13
    JournalPhysical Mesomechanics
    Volume20
    Issue number3
    Early online date23 Sept 2017
    DOIs
    Publication statusPublished - 2017

    Keywords

    • 3D EBdD
    • crystal plasticity
    • DAMAdK
    • dual phase steel
    • microstructure
    • spectral method

    Fingerprint

    Dive into the research topics of 'Crystal plasticity study on stress and strain partitioning in a measured 3D dual phase steel microstructure'. Together they form a unique fingerprint.

    Cite this