Projects per year
Abstract
low frequency and does not require a large number of degrees of freedom. Here, a custom finite element method (FEM) solver based on edge elements is proposed using the weakly coupled theory, which separates the solution into two steps. First, the background field (the magnetic vector potential on each edge) is calculated and stored. Then, the electric scalar potential on each node is
obtained by FEM based on Galerkin formulations. Consequently, the electric field and eddy current distribution in the object can be obtained. This solver is more efficient than typical commercial solvers since it reduces the vector eddy current equation to a scalar one, and reduces the meshing domain to just the eddy current region. It can therefore tackle complex eddy current calculations for
models with much larger numbers of elements, such as those encountered in eddy current computation in biological tissues. An example is presented with a realistic human brain mesh of 2 million elements. In addition, with this solver, the equivalent magnetic field induced from the excitation coil is applied, and therefore there is no need to mesh the excitation coil. In combination, these significantly increase the efficiency of the solver.
Original language | English |
---|---|
Journal | Bioelectromagnetics |
Early online date | 5 Oct 2018 |
DOIs | |
Publication status | Published - 21 Nov 2018 |
Keywords
- Finite element method (FEM)
- low-frequency eddy current computation
- calculation acceleration
- large number of mesh elements
- Computed tomography
Fingerprint
Dive into the research topics of 'Custom Edge-Element FEM Solver and Its Application to Eddy-Current Simulation of Realistic 2M-Element Human Brain Phantom'. Together they form a unique fingerprint.-
Electromagnetic Sensing Group
Peyton, A. (PI), Fletcher, A. (Researcher), Daniels, D. (CoI), Conniffe, D. (PGR student), Podd, F. (PI), Davidson, J. (Researcher), Anderson, J. (Support team), Wilson, J. (Researcher), Marsh, L. (PI), O'Toole, M. (PI), Watson, S. (PGR student), Yin, W. (PI), Regan, A. (PGR student), Williams, K. (Researcher), Rana, S. (Researcher), Khalil, K. (PGR student), Hills, D. (PGR student), Whyte, C. (PGR student), Wang, C. (PGR student), Hodgskin-Brown, R. (PGR student), Dadkhahtehrani, F. (PGR student), Forster, S. (PGR student), Zhu, F. (PGR student), Yu, K. (PGR student), Xiong, L. (PGR student), Lu, T. (PGR student), Zhang, L. (PGR student), Lyu, R. (PGR student), Zhu, R. (PGR student), She, S. (PGR student), Meng, T. (PGR student), Pang, X. (PGR student), Zheng, X. (PGR student), Bai, X. (PGR student), Zou, X. (PGR student), Ding, Y. (PGR student), Shao, Y. (PGR student), Xia, Z. (PGR student), Zhang, Z. (PGR student), Khangerey, R. (PGR student) & Lawless, B. (Researcher)
1/10/04 → …
Project: Research
-
Electromagnetic Tensor Imaging for in Process Welding Inspection
Yin, W. (PI) & Peyton, A. (CoI)
1/08/15 → 31/07/18
Project: Research