Cyber‐physical reliability of dynamic line rating ICT failures in OHL networks

K. Kopsidas, C. Cruzat, M. Ni

Research output: Contribution to journalArticlepeer-review

129 Downloads (Pure)

Abstract

The integration of information and communication technologies in power networks enables greater flexibility through Smart Grids and increased network adequacy and reliability. Information and communication technology's functionality and design diversity within the cyber-physical power system should be explicitly defined to quantify the risk of information and communication technology failures. The purpose of this paper is to quantify the cyber-physical reliability risk introduced by the information and communication technology deployed for dynamic line rating implementations, which are usually installed in adverse environments and have a higher failure risk than indoor information and communication technology installations. This cyber-physical reliability study employs a modified sequential Monte Carlo approach with a Markov state space to capture the dynamic line rating-information and communication technology functionality. The method integrates the additional dynamic line rating states within the overhead line operating states, which allows quantifying the risk of dynamic line rating failures against the risk of traditional probabilistic line rating uprating practices. Results from IEEE 24-bus and 14-bus network reliability studies indicate that dynamic line rating-information and communication technology failures (a) increase generation costs in the 24-bus transmission network with high generation flexibility, while (b) they reduce the reliability of the 14-bus network with small generation diversity and multiple load points. Such results can provide insightful recommendations on the quality of dynamic line rating-information and communication technology infrastructure and inform utility's investment planning processes and maintenance practices.
Original languageEnglish
Pages (from-to)371-382
JournalIET Generation, Transmission & Distribution
DOIs
Publication statusPublished - 12 Jan 2021

Fingerprint

Dive into the research topics of 'Cyber‐physical reliability of dynamic line rating ICT failures in OHL networks'. Together they form a unique fingerprint.

Cite this