Cystic fibrosis transmembrane conductance regulator and SLC26 transporters in HCO3- secretion by pancreatic duct cells.

Hiroshi Ishiguro, Martin Steward, Satoru Naruse

    Research output: Contribution to journalArticlepeer-review


    Pancreatic duct cells secrete HCO3(-) ions into a HCO3(-)-rich luminal fluid (~140 mmol/L in human) against at least a 6-fold concentration gradient. Candidate mechanisms for HCO3(-) transport across the apical membrane include Cl(-)-HCO3(-)exchange by an SLC26 anion transporter and diffusion via the HCO3(-) conductance of cystic fibrosis transmembrane conductance regulator (CFTR). Members of the SLC26 family are known to mediate Cl(-)-HCO3(-) exchange across the apical membrane of other epithelia and both SLC26A6 and SLC26A3 have been detected in pancreatic ducts. Co-expression studies have also revealed that murine slc26a6 and slc26a3 physically interact with CFTR through the STAS domain of slc26 and the R domain of CFTR, resulting in mutually enhanced activity. Other studies have indicated that these exchangers are electrogenic: slc26a6 mediating 1Cl(-)-2HCO3(-) exchange and slc26a3 mediating 2Cl(-)-1HCO3(-) exchange. Recent experiments using isolated pancreatic ducts from slc26a6(-)/(-) mice suggest that slc26a6 mediates most of the Cl(-)-dependent secretion of HCO3(-) across the apical membrane in the mouse and the data are consistent with the reported electrogenicity of slc26a6. However, the role of SLC26A6 in human pancreatic HCO3(-) secretion is less clear because human ducts are capable of secreting much higher concentrations of HCO3(-). The role of SLC26A6 must now be evaluated in a species such as the guinea pig which, like the human, is capable of secreting HCO3(-) at a concentration of ~140 mmol/L. From existing guinea pig data we calculate that a 1Cl(-)-2HCO3(-) exchanger such as slc26a6 would be unable to secrete HCO3(-) against such a steep gradient. On the other hand, the HCO3(-) conductance of CFTR could theoretically support secretion of HCO3(-) to a much higher concentrations. CFTR may therefore play a more important role than SLC26A6 in HCO3(-) secretion by the guinea pig and human pancreas.
    Original languageEnglish
    Pages (from-to)465-476
    Number of pages11
    JournalSheng li xue bao : [Acta physiologica Sinica]
    Issue number4
    Publication statusPublished - 25 Aug 2007


    Dive into the research topics of 'Cystic fibrosis transmembrane conductance regulator and SLC26 transporters in HCO3- secretion by pancreatic duct cells.'. Together they form a unique fingerprint.

    Cite this