Decontamination of Irradiated Nuclear Graphite Using High-Temperature Molten Salt-17447

    Research output: Contribution to conferencePaperpeer-review

    Abstract

    Irradiated graphite is one of the most significant, large volume waste streams in the UK. After shut down of gas cooled reactors there will be ~ 96,000 tonnes of nuclear graphite arising from pressure vessels, sealed or unsealed stacks, temporary surface storage and in silos, which may account for up to 30% by ILW volume of any future UK geological disposal facility. High temperature molten salt treatment (HMST) could be considered as a partitioning process of the activation and fission products from irradiated graphite. The main objective of the research is to optimize a specific graphite treatment technology compatible with older, current and future reactors to provide a safe and effective process to decontaminate graphite and reduce the waste inventory. In order to reach that purpose principal radionuclides contained in irradiated samples from Magnox reactors were investigated by germanium (Ge) gamma spectrometry. The next key tasks were to employ treatment at 450ºC in LiCl-KCl eutectic which included the following procedures: electrochemical cleaning of the salt, initial cyclic voltammetry (CV) of graphite followed by several steps of chronopotentiometry (CP) with different current applied and CV was taken after each step. Once the treatment was established, experiments investigating the electrorefinement of the resultant salt mixtures were conducted as well as the comparison of gamma spectroscopy results of graphite before and after the treatment providing the result of total activity reduction of around 60%.
    Original languageEnglish
    Pages5560-5567
    Number of pages8
    Publication statusPublished - 2017
    Event43rd Annual Waste Management Conference: Education & Opportunity in Waste Management - Phoenix Convention Centre, Phoenix, United States
    Duration: 5 Mar 20179 Mar 2017

    Conference

    Conference43rd Annual Waste Management Conference
    Abbreviated titleWM2017
    Country/TerritoryUnited States
    CityPhoenix
    Period5/03/179/03/17

    Fingerprint

    Dive into the research topics of 'Decontamination of Irradiated Nuclear Graphite Using High-Temperature Molten Salt-17447'. Together they form a unique fingerprint.

    Cite this