Abstract
Irradiated graphite is one of the most significant, large volume waste streams in the UK. After shut down of gas cooled reactors there will be ~ 96,000 tonnes of nuclear graphite arising from pressure vessels, sealed or unsealed stacks, temporary surface storage and in silos, which may account for up to 30% by ILW volume of any future UK geological disposal facility. High temperature molten salt treatment (HMST) could be considered as a partitioning process of the activation and fission products from irradiated graphite. The main objective of the research is to optimize a specific graphite treatment technology compatible with older, current and future reactors to provide a safe and effective process to decontaminate graphite and reduce the waste inventory. In order to reach that purpose principal radionuclides contained in irradiated samples from Magnox reactors were investigated by germanium (Ge) gamma spectrometry. The next key tasks were to employ treatment at 450ºC in LiCl-KCl eutectic which included the following procedures: electrochemical cleaning of the salt, initial cyclic voltammetry (CV) of graphite followed by several steps of chronopotentiometry (CP) with different current applied and CV was taken after each step. Once the treatment was established, experiments investigating the electrorefinement of the resultant salt mixtures were conducted as well as the comparison of gamma spectroscopy results of graphite before and after the treatment providing the result of total activity reduction of around 60%.
Original language | English |
---|---|
Pages | 5560-5567 |
Number of pages | 8 |
Publication status | Published - 2017 |
Event | 43rd Annual Waste Management Conference: Education & Opportunity in Waste Management - Phoenix Convention Centre, Phoenix, United States Duration: 5 Mar 2017 → 9 Mar 2017 |
Conference
Conference | 43rd Annual Waste Management Conference |
---|---|
Abbreviated title | WM2017 |
Country/Territory | United States |
City | Phoenix |
Period | 5/03/17 → 9/03/17 |