TY - JOUR
T1 - Delivery of Antisense Oligonucleotides to the Vascular Wall.
AU - Holt, Cathy M
AU - Gunn, Julian
AU - Lambert, Darren
AU - Cumberland, David C
AU - Crossman, David C
PY - 1999
Y1 - 1999
N2 - Antisense oligonucleotides are short segments of synthetic DNA designed to contain sequences of bases complementary to the DNA or RNA of a particular target gene of interest. By binding to the target, the antisense oligonucleotides can prevent translation of the gene into protein via different mechanisms including destruction of the AS-ODN-nucleic acid hybrid by RNAse H, steric hindrance of the ribosome causing interference of protein elongation, or blockage of the initiation of protein translation (1). Figure 1 shows the possible mechanisms of action of AS-ODNs. Fig. 1. Possible mechanisms of action of antisense oligonucleotides. 1, Aptameric or specific binding to transcription factors; 2, triplex formation via binding to doublestranded DNA resulting in steric inhibition of transcription of DNA into RNA; 3, specific binding to splice junctions or poly A signals inhibits mRNA maturation; 4, inhibition of transport from the nucleus; 5, specific binding to mRNA causing inhibition of translation via steric hindrance of ribosomal complexes; 6, duplex formation causing RNAse H mediated cleavage of mRNA; 7, aptameric binding to protein causing inhibition of protein function.
AB - Antisense oligonucleotides are short segments of synthetic DNA designed to contain sequences of bases complementary to the DNA or RNA of a particular target gene of interest. By binding to the target, the antisense oligonucleotides can prevent translation of the gene into protein via different mechanisms including destruction of the AS-ODN-nucleic acid hybrid by RNAse H, steric hindrance of the ribosome causing interference of protein elongation, or blockage of the initiation of protein translation (1). Figure 1 shows the possible mechanisms of action of AS-ODNs. Fig. 1. Possible mechanisms of action of antisense oligonucleotides. 1, Aptameric or specific binding to transcription factors; 2, triplex formation via binding to doublestranded DNA resulting in steric inhibition of transcription of DNA into RNA; 3, specific binding to splice junctions or poly A signals inhibits mRNA maturation; 4, inhibition of transport from the nucleus; 5, specific binding to mRNA causing inhibition of translation via steric hindrance of ribosomal complexes; 6, duplex formation causing RNAse H mediated cleavage of mRNA; 7, aptameric binding to protein causing inhibition of protein function.
U2 - 10.1385/1-59259-247-3:401
DO - 10.1385/1-59259-247-3:401
M3 - Article
C2 - 21341043
VL - 30
JO - Methods in Molecular Medicine
JF - Methods in Molecular Medicine
SN - 1543-1894
ER -