TY - JOUR
T1 - Detailed Sunyaev-Zel'dovich study with AMI of 19 LoCuSS galaxy clusters: Masses and temperatures out to the virial radius
AU - Rodríguez-Gonzálvez, Carmen
AU - Shimwell, Timothy W.
AU - Davies, Matthew L.
AU - Feroz, Farhan
AU - Franzen, Thomas M O
AU - Grainge, Keith J B
AU - Hobson, Michael P.
AU - Hurley-Walker, Natasha
AU - Lasenby, Anthony N.
AU - Olamaie, Malak
AU - Pooley, Guy
AU - Saunders, Richard D E
AU - Scaife, Anna M M
AU - Schammel, Michel P.
AU - Scott, Paul F.
AU - Titterington, David J.
AU - Waldram, Elizabeth M.
PY - 2012/9/1
Y1 - 2012/9/1
N2 - We present detailed 16-GHz interferometric observations using the Arcminute Microkelvin Imager (AMI) of 19 clusters with L X > 7 × 10 37W (h 50 = 1) selected from the Local Cluster Substructure Survey (LoCuSS; 0.142 ≤ z ≤ 0.295) and of Abell 1758b, which is in the field of view of Abell 1758a. We detect and resolve Sunyaev-Zel'dovich (SZ) signals towards 17 clusters, with peak surface brightnesses between 5σ and 23σ. We use a fast, Bayesian cluster analysis to obtain cluster parameter estimates in the presence of radio point sources, receiver noise and primordial cosmic microwave background (CMB) anisotropy. We fit isothermal β-models to our data and assume the clusters are virialized (with all the kinetic energy in gas internal energy). Our gas temperature, T AMI, is derived from AMI SZ data and not from X-ray spectroscopy. Cluster parameters internal to r 500 are derived under the assumption of hydrostatic equilibrium. We find the following. (i) Different generalized Navarro-Frenk-White (gNFW) parametrizations yield significantly different parameter degeneracies. (ii) For h 70 = 1, we find the classical virial radius, r 200, to be typically 1.6 ± 0.1Mpc and the total mass M T(r 200) typically to be 2.0-2.5× M T(r 500). (iii) Where we have found M T(r 500) and M T(r 200) X-ray and weak-lensing values in the literature, there is good agreement between weak-lensing and AMI estimates (with MT, AMI /MT, WL =1.2-0.3+0.2 and 1.0 ± 0.1 for r 500 and r 200, respectively). In comparison, most Suzaku/Chandra estimates are higher than for AMI (with M T, X/M T, AMI = 1.7 ± 0.2 within r 500), particularly for the stronger mergers. (iv) Comparison of T AMI to T X sheds light on high X-ray masses: even at large radius, T X can substantially exceed T AMI in mergers. The use of these higher T X values will give higher X-ray masses. We stress that large-radius T AMI and T X data are scarce and must be increased. (v) Despite the paucity of data, there is an indication of a relation between merger activity and SZ ellipticity. (vi) At small radius (but away from any cooling flow) the SZ signal (and T AMI) is less sensitive to intracluster medium disturbance than the X-ray signal (and T X) and, even at high radius, mergers affect n 2-weighted X-ray data more than n-weighted SZ, implying that significant shocking or clumping or both occur in even the outer parts of mergers. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.
AB - We present detailed 16-GHz interferometric observations using the Arcminute Microkelvin Imager (AMI) of 19 clusters with L X > 7 × 10 37W (h 50 = 1) selected from the Local Cluster Substructure Survey (LoCuSS; 0.142 ≤ z ≤ 0.295) and of Abell 1758b, which is in the field of view of Abell 1758a. We detect and resolve Sunyaev-Zel'dovich (SZ) signals towards 17 clusters, with peak surface brightnesses between 5σ and 23σ. We use a fast, Bayesian cluster analysis to obtain cluster parameter estimates in the presence of radio point sources, receiver noise and primordial cosmic microwave background (CMB) anisotropy. We fit isothermal β-models to our data and assume the clusters are virialized (with all the kinetic energy in gas internal energy). Our gas temperature, T AMI, is derived from AMI SZ data and not from X-ray spectroscopy. Cluster parameters internal to r 500 are derived under the assumption of hydrostatic equilibrium. We find the following. (i) Different generalized Navarro-Frenk-White (gNFW) parametrizations yield significantly different parameter degeneracies. (ii) For h 70 = 1, we find the classical virial radius, r 200, to be typically 1.6 ± 0.1Mpc and the total mass M T(r 200) typically to be 2.0-2.5× M T(r 500). (iii) Where we have found M T(r 500) and M T(r 200) X-ray and weak-lensing values in the literature, there is good agreement between weak-lensing and AMI estimates (with MT, AMI /MT, WL =1.2-0.3+0.2 and 1.0 ± 0.1 for r 500 and r 200, respectively). In comparison, most Suzaku/Chandra estimates are higher than for AMI (with M T, X/M T, AMI = 1.7 ± 0.2 within r 500), particularly for the stronger mergers. (iv) Comparison of T AMI to T X sheds light on high X-ray masses: even at large radius, T X can substantially exceed T AMI in mergers. The use of these higher T X values will give higher X-ray masses. We stress that large-radius T AMI and T X data are scarce and must be increased. (v) Despite the paucity of data, there is an indication of a relation between merger activity and SZ ellipticity. (vi) At small radius (but away from any cooling flow) the SZ signal (and T AMI) is less sensitive to intracluster medium disturbance than the X-ray signal (and T X) and, even at high radius, mergers affect n 2-weighted X-ray data more than n-weighted SZ, implying that significant shocking or clumping or both occur in even the outer parts of mergers. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.
KW - Cosmic background radiation
KW - Galaxies: clusters: general
KW - Galaxies: clusters: intracluster medium
KW - Large-scale structure of Universe
KW - Methods: observational
KW - Techniques: interferometric
U2 - 10.1111/j.1365-2966.2012.21419.x
DO - 10.1111/j.1365-2966.2012.21419.x
M3 - Article
VL - 425
SP - 162
EP - 203
JO - Royal Astronomical Society. Monthly Notices
JF - Royal Astronomical Society. Monthly Notices
SN - 1365-2966
IS - 1
ER -