Detecting near-surface moisture stress in Sphagnum spp.

A. Harris, R. G. Bryant, A. J. Baird

Research output: Contribution to journalArticlepeer-review


Estimating near-surface moisture conditions from the reflectance spectra (400-2500 nm) of Sphagnum moss offers great opportunities for the use of remote sensing as a tool for large-scale detailed monitoring of near-surface peatland hydrological conditions. This article investigates the effects of changes in near-surface and surface moisture upon the spectral characteristics of Sphagnum moss. Laboratory-based canopy reflectance data were collected from two common species of Sphagnum subjected to drying and subsequent rewetting. Several spectral indices developed from the near infra-red (NIR) and shortwave infra-red (SWIR) liquid water absorption bands and two biophysical indices (REIP and the chlorophyll index) were correlated with measures of near-surface moisture. All spectral indices tested were significantly correlated with near-surface moisture (with r between 0.27 and 0.94). The strongest correlations were observed using indices developed from the NIR liquid water absorption features (fWBI 980 and fWBI1200). However, a hysteretic response was observed in both NIR indices when the canopies were re-hydrated, a finding which may have implications for the timing of remote sensing image acquisition. The Moisture Stress Index (MSI), developed from the SWIR liquid water absorption feature also showed strong correlations with near-surface wetness although the range of moisture conditions over which the index was able to detect change was highly dependent on Sphagnum species. Of the biophysical spectral indices tested (REIP and the chlorophyll index), the most significant relationships were observed between the chlorophyll index and near-surface wetness. All spectral indices tested were species specific, and this is attributed to differences in canopy morphology between Sphagnum species. The potential for developing estimations of surface and near-surface hydrological conditions across northern peatlands using remote sensing technology is discussed. © 2005 Elsevier Inc. All rights reserved.
Original languageEnglish
Pages (from-to)371-381
Number of pages10
JournalRemote Sensing of Environment
Issue number3
Publication statusPublished - 15 Aug 2005


  • Carbon balance
  • Moisture
  • Remote sensing
  • Spectral reflectance
  • Sphagnum


Dive into the research topics of 'Detecting near-surface moisture stress in Sphagnum spp.'. Together they form a unique fingerprint.

Cite this