Detection of movement intention using EEG in a human-robot interaction environment

Ernesto Pablo Lana, Bruno Vilhena Adorno, Carlos Julio Tierra-Criollo

Research output: Contribution to journalArticlepeer-review


Introduction: This paper presents a detection method for upper limb movement intention as part of a brain- machine interface using EEG signals, whose final goal is to assist disabled or vulnerable people with activities of daily living. Methods: EEG signals were recorded from six naïve healthy volunteers while performing a motor task. Every volunteer remained in an acoustically isolated recording room. The robot was placed in front of the volunteers such that it seemed to be a mirror of their right arm, emulating a Brain Machine Interface environment. The volunteers were seated in an armchair throughout the experiment, outside the reaching area of the robot to guarantee safety. Three conditions are studied: observation, execution, and imagery of right arm’s flexion and extension movements paced by an anthropomorphic manipulator robot. The detector of movement intention uses the spectral F test for discrimination of conditions and uses as feature the desynchronization patterns found on the volunteers. Using a detector provides an objective method to acknowledge for the occurrence of movement intention. Results: When using four realizations of the task, detection rates ranging from 53 to 97% were found in five of the volunteers when the movement was executed, in three of them when the movement was imagined, and in two of them when the movement was observed. Conclusions: Detection rates for movement observation raises the question of how the visual feedback may affect the performance of a working brain-machine interface, posing another challenge for the upcoming interface implementation. Future developments will focus on the improvement of feature extraction and detection accuracy for movement intention using EEG data.
Original languageEnglish
Pages (from-to)285-294
Number of pages10
JournalResearch on Biomedical Engineering
Issue number4
Publication statusPublished - 1 Dec 2015


  • brain-machine interface
  • desynchronization
  • event-related
  • movement intention
  • objective response detection
  • statistical f test


Dive into the research topics of 'Detection of movement intention using EEG in a human-robot interaction environment'. Together they form a unique fingerprint.

Cite this