Determination of αS using OPAL hadronic event shapes at √ s = 91-209 GeV and resummed NNLO calculations

G. Abbiendi, C. Ainsley, P. F. Åkesson, G. Alexander, G. Anagnostou, K. J. Anderson, S. Asai, D. Axen, I. Bailey, E. Barberio, T. Barillari, R. J. Barlow, R. J. Batley, P. Bechtle, T. Behnke, K. W. Bell, P. J. Bell, G. Bella, A. Bellerive, G. BenelliS. Bethke, O. Biebel, O. Boeriu, P. Bock, M. Boutemeur, S. Braibant, R. M. Brown, H. J. Burckhart, S. Campana, P. Capiluppi, R. K. Carnegie, A. A. Carter, J. R. Carter, C. Y. Chang, D. G. Charlton, C. Ciocca, A. Csilling, M. Cuffiani, S. Dado, M. Dallavalle, A. de Roeck, E. A. de Wolf, K. Desch, B. Dienes, J. Dubbert, E. Duchovni, G. Duckeck, I. P. Duerdoth, E. Etzion, F. Fabbri, P. Ferrari, F. Fiedler, I. Fleck, M. Ford, A. Frey, P. Gagnon, J. W. Gary, C. Geich-Gimbel, G. Giacomelli, P. Giacomelli, M. Giunta, J. Goldberg, E. Gross, J. Grunhaus, M. Gruwé, A. Gupta, C. Hajdu, M. Hamann, G. G. Hanson, A. Harel, M. Hauschild, C. M. Hawkes, R. Hawkings, G. Herten, R. D. Heuer, J. C. Hill, D. Horváth, P. Igo-Kemenes, K. Ishii, H. Jeremie, P. Jovanovic, T. R. Junk, J. Kanzaki, D. Karlen, K. Kawagoe, T. Kawamoto, R. K. Keeler, R. G. Kellogg, B. W. Kennedy, S. Kluth, T. Kobayashi, M. Kobel, S. Komamiya, T. Krämer, A. Krasznahorkay, P. Krieger, J. von Krogh, T. Kuhl, M. Kupper, G. D. Lafferty, H. Landsman, D. Lanske, D. Lellouch, J. Letts, L. Levinson, J. Lillich, S. L. Lloyd, F. K. Loebinger, J. Lu, A. Ludwig, J. Ludwig, W. Mader, S. Marcellini, A. J. Martin, T. Mashimo, P. Mättig, J. McKenna, R. A. McPherson, F. Meijers, W. Menges, F. S. Merritt, H. Mes, N. Meyer, A. Michelini, S. Mihara, G. Mikenberg, D. J. Miller, W. Mohr, T. Mori, A. Mutter, K. Nagai, I. Nakamura, H. Nanjo, H. A. Neal, S. W. O'Neale, A. Oh, M. J. Oreglia, S. Orito, C. Pahl, G. Pásztor, J. R. Pater, J. E. Pilcher, J. Pinfold, D. E. Plane, O. Pooth, M. Przybycień, A. Quadt, K. Rabbertz, C. Rembser, P. Renkel, J. M. Roney, A. M. Rossi, Y. Rozen, K. Runge, K. Sachs, T. Saeki, E. K G Sarkisyan, A. D. Schaile, O. Schaile, P. Scharff-Hansen, J. Schieck, T. Schörner-Sadenius, M. Schröder, M. Schumacher, R. Seuster, T. G. Shears, B. C. Shen, P. Sherwood, A. Skuja, A. M. Smith, R. Sobie, S. Söldner-Rembold, F. Spano, A. Stahl, D. Strom, R. Ströhmer, S. Tarem, M. Tasevsky, R. Teuscher, M. A. Thomson, E. Torrence, D. Toya, I. Trigger, Z. Trócsányi, E. Tsur, M. F. Turner-Watson, I. Ueda, B. Ujvári, C. F. Vollmer, P. Vannerem, R. Vértesi, M. Verzocchi, H. Voss, J. Vossebeld, C. P. Ward, D. R. Ward, P. M. Watkins, A. T. Watson, N. K. Watson, P. S. Wells, T. Wengler, N. Wermes, G. W. Wilson, J. A. Wilson, G. Wolf, T. R. Wyatt, S. Yamashita, D. Zer-Zion, L. Zivkovic

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Hadronic event shape distributions from e+e- annihilation measured by the OPAL experiment at centre-of-mass energies between 91 GeV and 209 GeV are used to determine the strong coupling αS. The results are based on QCD predictions complete to the next-to-next-to-leading order (NNLO), and on NNLO calculations matched to the resummed next-to-leading-log-approximation terms (NNLO + NLLA). The combined NNLO result from all variables and centre-of-mass energies is [Equation not available: see fulltext.] while the combined NNLO + NLLA result is [Equation not available: see fulltext.] The completeness of the NNLO and NNLO + NLLA results with respect to missing higher order contributions, studied by varying the renormalization scale, is improved compared to previous results based on NLO or NLO + NLLA predictions only. The observed energy dependence of αS agrees with the QCD prediction of asymptotic freedom and excludes the absence of running. © 2011 The Author(s).
    Original languageEnglish
    Pages (from-to)1-21
    Number of pages20
    JournalEuropean Physical Journal C
    Volume71
    Issue number9
    DOIs
    Publication statusPublished - Sept 2011

    Fingerprint

    Dive into the research topics of 'Determination of αS using OPAL hadronic event shapes at √ s = 91-209 GeV and resummed NNLO calculations'. Together they form a unique fingerprint.

    Cite this