DFT and in situ EXAFS investigation of gold/ceria-zirconia low-temperature water gas shift catalysts: Identification of the nature of the active form of gold

D. Tibiletti, A. Amieiro-Fonseca, R. Burch, Y. Chen, J. M. Fisher, A. Goguet, C. Hardacre, P. Hu, D. Thompsett

    Research output: Contribution to journalArticlepeer-review

    Abstract

    A combined experimental and theoretical investigation of the nature of the active form of gold in oxide-supported gold catalysts for the water gas shift reaction has been performed. In situ extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) experiments have shown that in the fresh catalysts the gold is in the form of highly dispersed gold ions. However, under water gas shift reaction conditions, even at temperatures as low as 100°C, the evidence from EXAFS and XANES is only consistent with rapid, and essentially complete, reduction of the gold to form metallic clusters containing about 50 atoms. The presence of Au-Ce distances in the EXAFS spectra, and the fact that about 15% of the gold atoms can be reoxidized after exposure to air at 150°C, is indicative of a close interaction between a fraction (ca. 15%) of the gold atoms and the oxide support. Density functional theory (DFT) calculations are entirely consistent with this model and suggest that an important aspect of the active and stable form of gold under water gas shift reaction conditions is the location of a partially oxidized gold (Auδ+) species at a cerium cation vacancy in the surface of the oxide support. It is found that even with a low loading gold catalysts (0.2%) the fraction of ionic gold under water gas shift conditions is below the limit of detection by XANES (

    Original languageEnglish
    Pages (from-to)22553-22559
    Number of pages7
    JournalThe Journal of Physical Chemistry Part B: Condensed Matter, Materials, Surfaces, Interfaces & Biophysical
    Volume109
    Issue number47
    DOIs
    Publication statusPublished - 1 Dec 2005

    Fingerprint

    Dive into the research topics of 'DFT and in situ EXAFS investigation of gold/ceria-zirconia low-temperature water gas shift catalysts: Identification of the nature of the active form of gold'. Together they form a unique fingerprint.

    Cite this