TY - JOUR
T1 - Diagnosis of early Alzheimer’s disease based on dynamic high order networks
AU - Lei, Baiying
AU - Yu, Shuangzhi
AU - Zhao, Xin
AU - Frangi, Alejandro F.
AU - Tan, Ee Leng
AU - Elazab, Ahmed
AU - Wang, Tianfu
AU - Wang, Shuqiang
N1 - Funding Information:
This work was supported partly by National Natural Science Foundation of China (Nos.61871274, 61801305 and 81571758), National Natural Science Foundation of Guangdong Province (No. 2017A030313377), Guangdong Pearl River Talents Plan (2016ZT06S220), Shenzhen Peacock Plan (Nos. KQTD2016053112051497 and KQTD2015033016 104926), and Shenzhen Key Basic Research Project (Nos. JCYJ20170413152804728,JCYJ20180507184647636, JCYJ20170818142347251 and JCYJ20170818094109846). Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. HoffmannLa Roche Ltd. and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; MesoScale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org ). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.
Funding Information:
This work was supported partly by National Natural Science Foundation of China (Nos.61871274, 61801305 and 81571758), National Natural Science Foundation of Guangdong Province (No. 2017A030313377), Guangdong Pearl River Talents Plan (2016ZT06S220), Shenzhen Peacock Plan (Nos. KQTD2016053112051497 and KQTD2015033016 104926), and Shenzhen Key Basic Research Project (Nos. JCYJ20170413152804728,JCYJ20180507184647636, JCYJ20170818142347251 and JCYJ20170818094109846).
Funding Information:
Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. HoffmannLa Roche Ltd. and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; MesoScale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health ( www.fnih.org ). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.
Publisher Copyright:
© 2020, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2021/2
Y1 - 2021/2
N2 - Machine learning methods have been widely used for early diagnosis of Alzheimer’s disease (AD) via functional connectivity networks (FCNs) analysis from neuroimaging data. The conventional low-order FCNs are obtained by time-series correlation of the whole brain based on resting-state functional magnetic resonance imaging (R-fMRI). However, FCNs overlook inter-region interactions, which limits application to brain disease diagnosis. To overcome this drawback, we develop a novel framework to exploit the high-level dynamic interactions among brain regions for early AD diagnosis. Specifically, a sliding window approach is employed to generate some R-fMRI sub-series. The correlations among these sub-series are then used to construct a series of dynamic FCNs. High-order FCNs based on the topographical similarity between each pair of the dynamic FCNs are then constructed. Afterward, a local weight clustering method is used to extract effective features of the network, and the least absolute shrinkage and selection operation method is chosen for feature selection. A support vector machine is employed for classification, and the dynamic high-order network approach is evaluated on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Our experimental results demonstrate that the proposed approach not only achieves promising results for AD classification, but also successfully recognizes disease-related biomarkers.
AB - Machine learning methods have been widely used for early diagnosis of Alzheimer’s disease (AD) via functional connectivity networks (FCNs) analysis from neuroimaging data. The conventional low-order FCNs are obtained by time-series correlation of the whole brain based on resting-state functional magnetic resonance imaging (R-fMRI). However, FCNs overlook inter-region interactions, which limits application to brain disease diagnosis. To overcome this drawback, we develop a novel framework to exploit the high-level dynamic interactions among brain regions for early AD diagnosis. Specifically, a sliding window approach is employed to generate some R-fMRI sub-series. The correlations among these sub-series are then used to construct a series of dynamic FCNs. High-order FCNs based on the topographical similarity between each pair of the dynamic FCNs are then constructed. Afterward, a local weight clustering method is used to extract effective features of the network, and the least absolute shrinkage and selection operation method is chosen for feature selection. A support vector machine is employed for classification, and the dynamic high-order network approach is evaluated on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Our experimental results demonstrate that the proposed approach not only achieves promising results for AD classification, but also successfully recognizes disease-related biomarkers.
KW - Alzheimer’s disease
KW - resting-state functional magnetic resonance imaging
KW - functional connectivity networks
KW - dynamic high-order network
UR - http://www.scopus.com/inward/record.url?scp=85089376658&partnerID=8YFLogxK
U2 - 10.1007/s11682-019-00255-9
DO - 10.1007/s11682-019-00255-9
M3 - Article
C2 - 32789620
AN - SCOPUS:85089376658
SN - 1931-7557
VL - 15
SP - 276
EP - 287
JO - Brain Imaging and Behavior
JF - Brain Imaging and Behavior
IS - 1
ER -