Diagnostic Yield of Genetic Testing in Young Athletes With T-Wave Inversion

Nabeel Sheikh, Michael Papadakis, Mathew Wilson, Aneil Malhotra, Carmen Adamuz, Tessa Homfray, Lorenzo Monserrat, Elijah R Behr, Sanjay Sharma

Research output: Contribution to journalArticlepeer-review

60 Downloads (Pure)

Abstract

BACKGROUND: T-wave inversion (TWI) is common in patients with cardiomyopathy. However, up to 25% of athletes of African/Afro-Caribbean descent (black athletes) and 5% of white athletes also have TWI of unclear clinical significance despite comprehensive clinical evaluation and long-term follow-up. The aim of this study was to determine the diagnostic yield from genetic testing, beyond clinical evaluation, when investigating athletes with TWI.

METHODS: We investigated 50 consecutive asymptomatic black and 50 white athletes 14 to 35 years of age with TWI and a normal echocardiogram who were referred to a UK tertiary center for cardiomyopathy and sports cardiology. Subjects underwent exercise testing, 24-hour ambulatory ECG, signal-averaged ECG, cardiac magnetic resonance imaging, and a blood-based analysis of a comprehensive 311-gene panel for cardiomyopathies and ion channel disorders associated with TWI, including hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy, left ventricular noncompaction, long-QT syndrome, and Brugada syndrome.

RESULTS: In total, 21 athletes (21%) were diagnosed with cardiac disease on the basis of comprehensive clinical investigations. Of these, 8 (38.1%) were gene positive (myosin binding protein C[ MYBPC3], myosin heavy chain 7 [ MYH7], galactosidase alpha [ GLA], and actin alpha, cardiac muscle 1 [ ACTC1] genes) and 13 (61.9%) were gene negative. Of the remaining 79 athletes (79%), 2 (2.5%) were gene positive (transthyretin [ TTR] and sodium voltage-gated channel alpha subunit 5 [ SCN5A] genes) in the absence of a clinical phenotype. The prevalence of newly diagnosed cardiomyopathy was higher in white athletes compared with black athletes (30.0% versus 12%; P=0.027). Hypertrophic cardiomyopathy accounted for 90.5% of all clinical diagnoses. All black athletes and 93.3% of white athletes with a clinical diagnosis of cardiomyopathy or a genetic mutation capable of causing cardiomyopathy exhibited lateral TWI as opposed to isolated anterior or inferior TWI; the genetic yield of diagnoses from lateral TWI was 12.3%.

CONCLUSIONS: Up to 10% of athletes with TWI revealed mutations capable of causing cardiac disease. Despite the substantial cost, the positive diagnostic yield from genetic testing was one half that from clinical evaluation (10% versus 21%) and contributed to additional diagnoses in only 2.5% of athletes with TWI in the absence of a clear clinical phenotype, making it of negligible use in routine clinical practice.

Original languageEnglish
Pages (from-to)1184-1194
Number of pages11
JournalCirculation
Volume138
Issue number12
DOIs
Publication statusPublished - 18 Sept 2018

Keywords

  • Adolescent
  • Adult
  • African Continental Ancestry Group/genetics
  • Arrhythmias, Cardiac/diagnosis
  • Athletes
  • Cardiomyopathies/diagnosis
  • Electrocardiography, Ambulatory
  • European Continental Ancestry Group/genetics
  • Exercise Test
  • Female
  • Gene Expression Profiling
  • Genetic Markers
  • Genetic Predisposition to Disease
  • Genetic Testing/methods
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Mutation
  • Phenotype
  • Predictive Value of Tests
  • Prognosis
  • Prospective Studies
  • Risk Assessment
  • Risk Factors
  • Young Adult

Fingerprint

Dive into the research topics of 'Diagnostic Yield of Genetic Testing in Young Athletes With T-Wave Inversion'. Together they form a unique fingerprint.

Cite this