Abstract
Recent experimental studies of Liu and Groves (J. Am. Chem. Soc. 2010; 132: 12847) on dioxomanganese(V) porphyrin complexes implicated substrate halogenation in good yield. Currently, little is known of this unique mechanism, therefore to gain understanding on the halogenation mechanism and the chemical features of this oxidant we decided to do a computational (density functional theory) study. We show that the dioxomanganese(V) complex has considerably different molecular (valence) orbitals as compared to monooxomanganese(V) porphyrin due to mixing of the metal 3d orbitals with 2p orbitals on both oxygen atoms. This results in a set of three pairs of orbitals of which the bonding and nonbonding pairs are doubly occupied and the antibonding orbitals are vacant. As a consequence, the bonding character along the Mn-O bond is less in dioxomanganese(V) as compared to monooxomanganese(V) complexes and therefore this bond can formally be described as a double bond rather than a triple bond. The differences in orbital interactions and orbital energies also affect the intrinsic chemical properties of the oxidants, such as the electron affinity and pKa values, which result in enhanced catalytic potential for dioxomanganese(V) porphyrin. Our calculations predict a halogenation mechanism in line with that proposed by experiment with an initial hydrogen atom abstraction followed by ligand exchange and halogen transfer. Copyright © 2013 World Scientific Publishing Company.
Original language | English |
---|---|
Pages (from-to) | 954-963 |
Number of pages | 9 |
Journal | Journal of Porphyrins and Phthalocyanines |
Volume | 17 |
Issue number | 10 |
DOIs | |
Publication status | Published - Oct 2013 |
Keywords
- density functional theory
- halogenation
- iron
- models
- oxygen
- porphyrin
- reactivity